People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ghiassi, Bahman
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Synergizing Hybrid Short Fibres and Composite Cements for Sustainable and Efficient Textile-Reinforced Concrete compositescitations
- 2022Development of cost-effective low carbon hybrid textile reinforced concrete for structural or repair applicationscitations
- 2022Preliminary results on natural aging of GFRP-reinforced masonry components exposed to outdoor environmental conditionscitations
- 2022Microfibrillated cellulose as a new approach to develop lightweight cementitious composites: Rheological, Mechanical, and microstructure perspectivescitations
- 2022Cyclic load effects on the bond behavior of textile reinforced mortar (TRM) compositescitations
- 2022Cyclic load effects on the bond behavior of textile reinforced mortar (TRM) compositescitations
- 2021Quick reparation of infills in RC frames after seismic damages – experimental tests on shaking tablecitations
- 2021Aging of lime-based TRM composites under natural environmental conditionscitations
- 2019GEOCON BRIDGE
- 2018CO2 binding capacity of alkali-activated fly ash and slag pastescitations
- 2018On the identification of earlywood and latewood radial elastic modulus of Pinus pinaster by digital image correlation: a parametric analysiscitations
- 2016Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided compositescitations
- 2016Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameterscitations
- 2016Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameterscitations
- 2014Investigating the durability of FRP-masonry elements immersed in water
- 2013Experimental investigation on the long-term durability of bond between FRP and masonry substrates
- 2012Moisture effects on the bond strength of FRP-masonry elements
Places of action
Organizations | Location | People |
---|
article
Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters
Abstract
© 2016 Published by Elsevier Ltd. Auxetic materials are gaining special interest in technical sectors due to their attractive mechanical behaviour. This paper reports a systematic investigation on missing rib design based auxetic structures produced from braided composites for civil engineering applications. The influence of various structural and material parameters on auxetic and mechanical properties was thoroughly investigated. The basic structures were also modified with straight longitudinal rods to enhance their strengthening potential in structural elements. Additionally, a new analytical model was proposed to predict Poisson's ratio through a semi empirical approach. Auxetic and tensile behaviours were also predicted using finite element analysis. The auxetic and tensile behaviours were observed to be more strongly dependent on their structural parameters than the material parameters. The developed analytical models could well predict the auxetic behaviour of these structures except at very low or high strains. Good agreement was also observed between the experimental results and numerical analysis.