Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seth, S.

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Knowledgebase of potential multifaceted solutions to antimicrobial resistance.6citations

Places of action

Chart of shared publication
Fatima, F.
1 / 1 shared
James, S.
1 / 2 shared
Chaurasia, P.
1 / 1 shared
Ramachandran, S.
1 / 3 shared
Bhargav, A.
1 / 1 shared
Gupta, S.
1 / 15 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Fatima, F.
  • James, S.
  • Chaurasia, P.
  • Ramachandran, S.
  • Bhargav, A.
  • Gupta, S.
OrganizationsLocationPeople

article

Knowledgebase of potential multifaceted solutions to antimicrobial resistance.

  • Fatima, F.
  • James, S.
  • Chaurasia, P.
  • Ramachandran, S.
  • Seth, S.
  • Bhargav, A.
  • Gupta, S.
Abstract

Antimicrobial resistance (AMR), a top threat to global health, challenges preventive and treatment strategies of infections. AMR strains of microbial pathogens arise through multiple mechanisms. The underlying "antibiotic resistance genes" (ARGs) spread through various species by lateral gene transfer thereby causing global dissemination. Human methods also augment this process through inappropriate use, non-compliance to treatment schedule, and environmental waste. Worldwide significant efforts are being invested to discover novel therapeutic solutions for tackling resistant pathogens. Diverse therapeutic strategies have evolved over recent years. In this work we have developed a comprehensive knowledgebase by collecting alternative antimicrobial therapeutic strategies from literature data. Therapeutic strategies against bacteria, virus, fungus and parasites were extracted from PubMed literature using text mining. We have used a subjective (sentimental) approach for data mining new strategies, resulting in broad coverage of novel entities and subsequently add objective data like entity name (including IUPAC), potency, and safety information. The extracted data was organized in a freely accessible web platform, KOMBAT. The KOMBAT comprises 1104 Chemical compounds, 220 of newly identified antimicrobial peptides, 42 bacteriophages, 242 phytochemicals, 106 nanocomposites, and 94 novel entities for phototherapy. Entities tested and evaluated on AMR pathogens are included. We envision that this database will be useful for developing future therapeutics against AMR pathogens. The database can be accessed through http://kombat.igib.res.in/.

Topics
  • nanocomposite
  • compound