People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Verho, Tuukka
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2025A skeletonization-based approach for individual fiber separation in tomography images of biocomposites
- 2023Vibrations of Thin Bio Composite Plates
- 2022Biocomposite modeling by tomographic feature extraction and synthetic microstructure reconstructioncitations
- 2021Micromechanical performance of high-density polyethylene:experimental and modeling approaches for HDPE and its alumina-nanocompositescitations
- 2021Micromechanical performance of high-density polyethylenecitations
- 2019Matrix morphology and the particle dispersion in HDPE nanocomposites with enhanced wear resistancecitations
- 2018Crystal Growth in Polyethylene by Molecular Dynamics:The Crystal Edge and Lamellar Thicknesscitations
- 2018Crystal Growth in Polyethylene by Molecular Dynamicscitations
- 2018Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughnesscitations
- 2017Toughness and Flaw Tolerance by Biologically Inspired Approaches ; Sitkeitä rakennemateriaaleja luontoa jäljitellencitations
- 2017Micromechanical modeling of failure behavior of metallic materialscitations
- 2017Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocompositescitations
- 2015Fabrication of graphene-based 3D structures by stereolithographycitations
Places of action
Organizations | Location | People |
---|
article
A skeletonization-based approach for individual fiber separation in tomography images of biocomposites
Abstract
The separation individual fibers is a persistent challenge in analyzing fiber composites and fibrous materials with X-ray microtomography. A variety of approaches have been published, but they generally work poorly for heterogeneous fibers with varying cross sections, orientations, lengths and shapes. We present a skeletonization-based method that can separate highly curled and heterogeneous pulp fibers in biocomposites with thickness close to the resolution limit. Optical pulp analysis for fibers extracted from the composites is used as a reference. We show that while the mean length is underestimated by our method, the shape features are better analyzed than in the reference method as fibers are not extracted or swollen in water. Our analysis reveals that the shape factor and orientation of fibers have power law dependencies on fiber length. The fiber separation and analysis method can be used as a basis for numerical modeling of the materials.