People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borodin, Elijah
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Discrete modelling of continuous dynamic recrystallisation by modified Metropolis algorithmcitations
- 2024Triple junction disclinations in severely deformed Cu-0.4%Mg alloyscitations
- 2024Discrete model for discontinuous dynamic recrystallisation applied to grain structure evolution inside adiabatic shear bandscitations
- 2024Defect-induced fracture topologies in Al 2 O 3 ceramic-graphene nanocomposites
- 2024Defect-induced fracture topologies in Al2O3 ceramic-graphene nanocomposites
- 2023Topological characteristics of grain boundary networks during severe plastic deformations of copper alloyscitations
- 2021Triple junctions network as the key pattern for characterisation of grain structure evolution in metalscitations
- 2021Optimisation of rGO-enriched nanoceramics by combinatorial analysiscitations
- 2020Evolution of triple junctions’ network during severe plastic deformation of copper alloys – a discrete stochastic modellingcitations
- 2019Experimental and numerical analyses of microstructure evolution of Cu-Cr-Zr alloys during severe plastic deformationcitations
- 2017Grain refinement kinetics in a low alloyed Cu-Cr-Zr alloy subjected to large strain deformationcitations
- 2015Kinetic model for mechanical twinning and its application for intensive loading of metals
Places of action
Organizations | Location | People |
---|
article
Discrete modelling of continuous dynamic recrystallisation by modified Metropolis algorithm
Abstract
Continuous dynamic recrystallisation (CDRX) is often the primary mechanism for microstructure evolution during severe plastic deformation (SPD) of polycrystalline metals. Its physically realistic simulation remains challenging for the existing modelling approaches based on continuum mathematics because they do not capture important local interactions between microstructure elements and spatial inhomogeneities in plastic strain. An effective discrete method for simulating CDRX is developed in this work. It employs algebraic topology, graph theory and statistical physics tools to represent an evolution of grain boundary networks as a sequence of conversions between low-angle grain boundaries (LAGBs) and high-angle grain boundaries (HAGBs) governed by the principle of minimal energy increase, similar to the well-known Ising model. The energy is minimised by a modified Metropolis algorithm. The model is used to predict the equilibrium fractions of HAGBs in several SPD-processed copper alloys. The analysis captures non-equilibrium features of the transitions from sub-grain structures to new HAGB-dominated grain structures and provides estimations of critical values for HAGB fractions and accumulated strain at these transitions.