People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuutti, Juha
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Constraint effects on fracture toughness of ductile cast iron in the ductile regimecitations
- 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weld
- 2022Sensitivity of the Master Curve reference temperature T0 to the crack front curvaturecitations
- 2022Miniature C(T) Specimens-Pinhole Eccentricity and the Effect of Crack Opening Displacement Measurement Locationcitations
- 2021Evaluation of an Alloy 52 / Cladded Carbon Steel Repair Weld by Cold Metal Transfer
- 2021Online nonlinear ultrasound imaging of crack closure during thermal fatigue loadingcitations
- 2020Numerical assessment of the effects of microcrack interaction in AM componentscitations
- 2020A52M/SA502 Dissimilar Metal RPV Repair Weld:Evaluation of different techniques
- 2020A52M/SA502 Dissimilar Metal RPV Repair Weld
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizationscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizationscitations
- 2018Comparison of ASME XI and BS7910 Allowable Surface Flaw Size Evaluation Procedures in Piping Componentscitations
- 2017Use of CTOD as crack driving force parameter for low-cycle thermal fatigue
- 2013Disposal canister shock absorber tests and analysis
- 2012A local remeshing procedure to simulate crack propagation in quasi-brittle materialscitations
- 2011Fracture Assessment of Reactor Circuit (FRAS):Advanced numerical fracture assessment methods
- 2010Simulation of ice crushing experiment using FE-model update technique
Places of action
Organizations | Location | People |
---|
article
Numerical assessment of the effects of microcrack interaction in AM components
Abstract
A combined analytical–numerical method to study the effects of linear microcracks and their interaction in additively manufactured components is presented. The 2-D method combines an analytical technique to solve the interaction of microcracks and a numerical RVE type technique to represent the microcracking within a finite element framework using Abaqus finite element software. The method is applied to both a unit cell and test specimen type geometries containing defect patterns generated based on general trends reported for AM materials. The approach is able to determine the local stress intensity factors for each microcrack and their stiffness degradation effects in the continuum. Parallel defect patterns, such as co-oriented lack-of-fusion defects between build layers in AM materials, induce the greatest interaction effects while overall interaction effects in random patterns tend to cancel out. Stacked surface defects produce shielding effects on each other, which may cause a neighbouring subsurface defect to be more critical than the surface defects. The results show that the common geometrical interacting defect re-characterisation rules may provide an incorrect prediction of the failure origin. Finally, the applicability of the method is demonstrated with an example AM component.