Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baibuz, Ekaterina

  • Google
  • 7
  • 14
  • 170

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2020Application of artificial neural networks for rigid lattice kinetic Monte Carlo studies of Cu surface diffusion11citations
  • 2020Tungsten migration energy barriers for surface diffusion5citations
  • 2019Au nanowire junction breakup through surface atom diffusion39citations
  • 2018Migration barriers for surface diffusion on a rigid lattice : Challenges and solutions24citations
  • 2018Migration barriers for surface diffusion on a rigid lattice24citations
  • 2018Au nanowire junction breakup through surface atom diffusion39citations
  • 2016Long-term stability of Cu surface nanotips28citations

Places of action

Chart of shared publication
Vigonski, Simon
6 / 7 shared
Djurabekova, Flyura Gatifovna
5 / 37 shared
Domingos, Roberto
1 / 1 shared
Jansson, Ville
7 / 9 shared
Kimari, Jyri
1 / 1 shared
Zadin, Vahur
6 / 11 shared
Kyritsakis, Andreas
1 / 10 shared
Aabloo, Alvo
3 / 8 shared
Djurabekova, Flyura
2 / 11 shared
Polyakov, Boris
2 / 3 shared
Oras, Sven
2 / 4 shared
Vlassov, Sergei
2 / 4 shared
Lahtinen, Jyri
2 / 2 shared
Zhao, Junlei
2 / 7 shared
Chart of publication period
2020
2019
2018
2016

Co-Authors (by relevance)

  • Vigonski, Simon
  • Djurabekova, Flyura Gatifovna
  • Domingos, Roberto
  • Jansson, Ville
  • Kimari, Jyri
  • Zadin, Vahur
  • Kyritsakis, Andreas
  • Aabloo, Alvo
  • Djurabekova, Flyura
  • Polyakov, Boris
  • Oras, Sven
  • Vlassov, Sergei
  • Lahtinen, Jyri
  • Zhao, Junlei
OrganizationsLocationPeople

article

Application of artificial neural networks for rigid lattice kinetic Monte Carlo studies of Cu surface diffusion

  • Vigonski, Simon
  • Djurabekova, Flyura Gatifovna
  • Domingos, Roberto
  • Baibuz, Ekaterina
  • Jansson, Ville
  • Kimari, Jyri
  • Zadin, Vahur
Abstract

Kinetic Monte Carlo (KMC) is a powerful method for simulation of diffusion processes in various systems. The accuracy of the method, however, relies on the extent of details used for the parameterization of the model. Migration barriers are often used to describe diffusion on atomic scale, but the full set of these barriers may become easily unmanageable in materials with increased chemical complexity or a large number of defects. This work is a feasibility study for applying a machine learning approach for Cu surface diffusion. We train an artificial neural network on a subset of the large set of 2(26) barriers needed to correctly describe the surface diffusion in Cu. Our KMC simulations using the obtained barrier predictor show sufficient accuracy in modelling processes on the low-index surfaces and display the correct thermodynamical stability of these surfaces. ; Peer reviewed

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • defect
  • machine learning