People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Melro, Antonio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Mode I and Mode II interfacial fracture energy of SiC/BN/SiC CMCscitations
- 2020Micromechanical modelling of interlaminar damage propagation and migrationcitations
- 2020Micromechanical modelling of the longitudinal compressive and tensile failure of unidirectional compositescitations
- 2020On the importance of nesting considerations for accurate computational damage modelling in 2D woven composite materialscitations
- 2018COUPON SCALE MODELLING OF THE BRIDGING MECHANICS OF HIGH-RATE LOADED Z-PINS
- 2017The effect of through-thickness compressive stress on mode II interlaminar crack propagationcitations
Places of action
Organizations | Location | People |
---|
article
On the importance of nesting considerations for accurate computational damage modelling in 2D woven composite materials
Abstract
The mechanical behaviour and progressive damage of twodimensional plain woven carbon-epoxy fabrics is modelled at different length scales, taking into account the geometric and material variability of the weave, by subjecting the dry preforms to compaction simulations. Micromechanical analyses are performed using a fibre distribution algorithm, in order to obtain the mechanical properties of the tows for any given fibre volume fraction. Different Representative Unit Cells are generated, compacted, and subjected to Periodic Boundary Conditions in order to compare their mechanical performance, under different loading scenarios. Additional analyses are undertaken to evaluate the effect of nesting under different stress states. Through computational homogenisation, it is possible to study damage evolution and corresponding stiffness degradation of the material. The numerical predictions are compared with experimental observations, and show that, to model damage: i) a single ply with three-dimensional Periodic Boundary Conditions or four plies with two-dimensional Periodic Boundary Conditions may not be the most accurate approach to model damage; ii) it is important to consider the effect of nesting in such computational models, since they play a key role in the mechanical response of the material.