Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dziedzic, Jacek

  • Google
  • 4
  • 8
  • 31

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Properties of oxygen vacancy and hydrogen interstitial defects in strontium titanate6citations
  • 2022Properties of oxygen vacancy and hydrogen interstitial defects in strontium titanate: DFT + Ud,p calculations6citations
  • 2019In-depth characterization of icosahedral ordering in liquid copper7citations
  • 2017Effect of polymerization statistics on the electronic properties of copolymers for organic photovoltaics12citations

Places of action

Chart of shared publication
Miruszewski, Tadeusz
2 / 4 shared
Gazda, Maria
2 / 7 shared
Winczewski, Szymon
3 / 3 shared
Rybicki, Jarosław
3 / 3 shared
Boschetto, Gabriele
1 / 4 shared
Krompiec, Michal
1 / 1 shared
Skylaris, Chris-Kriton
1 / 2 shared
Xue, Hong-Tao
1 / 1 shared
Chart of publication period
2022
2019
2017

Co-Authors (by relevance)

  • Miruszewski, Tadeusz
  • Gazda, Maria
  • Winczewski, Szymon
  • Rybicki, Jarosław
  • Boschetto, Gabriele
  • Krompiec, Michal
  • Skylaris, Chris-Kriton
  • Xue, Hong-Tao
OrganizationsLocationPeople

article

In-depth characterization of icosahedral ordering in liquid copper

  • Dziedzic, Jacek
  • Winczewski, Szymon
  • Rybicki, Jarosław
Abstract

The presence of icosahedral ordering in liquid copper at temperatures close to the melting point is now wellestablished both experimentally and through computer simulation. However, a more elaborate analysis of local icosahedral and icosahedron-like structures, together with a system for classifying such structures based on some measure of “icosahedrity”, has so far been conspicuously absent in the literature. Similarly, the dynamics of these structures has not yet received the attention it merits. We present a new method for structural analysis, which combines Voronoi analysis with bond-orientational<br/>order parameters, and apply it to liquid Cu configurations obtained from tight-binding molecular dynamics at arange of temperatures near the melting point. We introduce a clear system for classifying local structures according to their degree of similarity to the perfect icosahedron, and show how their energies of formation correlate with our structural descriptor. We examine the frequencies of occurrence for the classes of Voronoi polyhedra we distinguish, calculate their lifetimes, and establish the temperature dependence of these properties. We explore the dynamics of icosahedron-like structures by examining how individual classes transform between one another. Finally, we perform structural correlation analysis, demonstrating, among other things, that icosahedra and icosahedron-like structures preferentially connect and show a tendency towards clustering. We believe our approach can be readily applied in studies of icosahedral ordering in liquid metals or metallic glasses.

Topics
  • impedance spectroscopy
  • simulation
  • glass
  • glass
  • molecular dynamics
  • copper
  • clustering