People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Finotello, Giulia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Cyclic reduction of combusted iron powdercitations
- 2024Innovative Electrolytic Production of Iron Powder for the Circularity of Iron Fuel Cycle
- 2024Innovative Electrolytic Production of Iron Powder for the Circularity of Iron Fuel Cycle
- 2024On the formation of dendritic iron from alkaline electrochemical reduction of iron oxide prepared for metal fuel applicationscitations
- 2024On the formation of dendritic iron from alkaline electrochemical reduction of iron oxide prepared for metal fuel applicationscitations
- 2024Cyclic reduction of combusted iron powder:A study on the material properties and conversion reaction in the iron fuel cyclecitations
- 2024A Rotating Disc Electrochemical Reactor to Produce Iron Powder for the Co2-Free Iron Fuel Cycle
- 2024RUST-TO-GREEN IRON
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023Dendritic Iron Formation in Low-Temperature Iron Oxide Electroreduction Process using Alkaline Solution
- 2023Dendritic Iron Formation in Low-Temperature Iron Oxide Electroreduction Process using Alkaline Solution
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023Minimum fluidization velocity and reduction behavior of combusted iron powder in a fluidized bedcitations
- 2023Sintering behavior of combusted iron powder in a packed bed reactor with nitrogen and hydrogencitations
- 2023Size evolution during laser-ignited single iron particle combustioncitations
- 2023Comparative study of electroreduction of iron oxide using acidic and alkaline electrolytes for sustainable iron productioncitations
- 2023Comparative study of electroreduction of iron oxide using acidic and alkaline electrolytes for sustainable iron productioncitations
- 2023Regenerating Iron via Electrolysis for CO2-Free Energy Storage and Carrier
- 2022Electrochemical Reduction of Iron Oxide - Produced from Iron Combustion - for the Valorization of Iron Fuel Cycle
- 2022Experimental Study of Iron Oxide Electroreduction with Different Cathode Material
- 2021Burn time and combustion regime of laser-ignited single iron particlecitations
Places of action
Organizations | Location | People |
---|
article
Burn time and combustion regime of laser-ignited single iron particle
Abstract
<p>An improved particle generator based on electrodynamic powder fluidization is proposed and constructed for investigating single metal particle's combustion. The designed setup is able to generate a single metal particle moving upward with a well controlled velocity and trajectory and ignite it at near-uniform conditions by an infrared laser beam with flattened elliptical beam profile. Mechanically sieved narrow fractions of spherical iron particles with mean sizes in the range of around 26–54 μm were used in experiments. Particles burned in O<sub>2</sub>/N<sub>2</sub> mixtures with oxygen content varying from 21% to 36%. Particle's trajectories, velocities, and arbitrary radiant intensities were measured by taking images with a high-speed camera and processing them with an in-house developed data processing program. Two characteristic times associated with particle combustion were measured: 1) total duration of high-temperature phase (t<sub>tot</sub>) and 2) time to the maximum brightness (t<sub>max</sub>). The results show that t<sub>tot</sub> and t<sub>max</sub> can be described by a d<sup>n</sup>-law with 1.57≲n≲1.72 and 1.46≲n≲1.60, respectively. The effect of oxygen concentration on t<sub>tot</sub>, t<sub>max</sub>, and t<sub>dec</sub>=t<sub>tot</sub>−t<sub>max</sub> was analyzed for selected particle sizes of 30, 40, and 50 μm. It was found that t<sub>max</sub>∝(1/X<sub>O2</sub>)<sup>n</sup> with 1.04≲n≲1.18 is almost linearly proportional to 1/X<sub>O2</sub>, while t<sub>dec</sub> shows a very weak dependency on the oxygen concentration at 26%–36%. This can be explained by the idea that the overall combustion process of iron is controlled by first external and then internal diffusion of oxygen owing to the saturation of oxygen on the particle surface.</p>