People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Goey, Philip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Iron powder particles as a clean and sustainable carriercitations
- 2024Cyclic reduction of combusted iron powdercitations
- 2024Towards an efficient metal energy carrier for zero–emission heating and power:Iron powder combustioncitations
- 2024Towards an efficient metal energy carrier for zero–emission heating and powercitations
- 2024The Heat Flux Method for hybrid iron–methane–air flamescitations
- 2024Thermoacoustic stability analysis and robust design of burner-deck-anchored flames using flame transfer function composition
- 2024Cyclic reduction of combusted iron powder:A study on the material properties and conversion reaction in the iron fuel cyclecitations
- 2024Iron powder particles as a clean and sustainable carrier:Investigating their impact on thermal outputcitations
- 2024Experimental and Statistical Analysis of Iron Powder for Green Heat Productioncitations
- 2024A numerical study of emission control strategies in an iron powder burnercitations
- 2023Particle Equilibrium Composition model for iron dust combustioncitations
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023The Heat Flux Method adapted for hybrid iron-methane-air flames
- 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flame
- 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flame
- 2023Burning Velocity Measurements for Flat Hybrid Iron-Methane-Air Flames
- 2023Size evolution during laser-ignited single iron particle combustioncitations
- 2022Phase transformations and microstructure evolution during combustion of iron powdercitations
- 2022Laminar burning velocity of hybrid methane-iron-air flames
- 2021Burn time and combustion regime of laser-ignited single iron particlecitations
- 2014On hydrogen addition effects in turbulent combustion using the Flamelet Generated Manifold technique
- 2011Gasoline port fuel injection on a heavy-duty diesel engine
- 2009Visualization of biomass pyrolysis and temperature imaging in a heated-grid reactorcitations
- 2008Reverse combustion : kinetically controlled and mass transfer controlled front structurescitations
Places of action
Organizations | Location | People |
---|
article
Reverse combustion : kinetically controlled and mass transfer controlled front structures
Abstract
Under most conditions for reverse fixed bed combustion, transport effects of heat and gaseous species to andwithin fuel bed particles are important phenomena that limit the conversion rate. At present there is only one model that (1) claims to take transport limitations into account and (2) for which analytical solutions are given. Here, we present a numerical study of reverse combustion analysis on the basis of this model to show the effect of transport limitations on the reaction front structure and the consequences of these effects for the applicability and accuracy of the analytical solution procedure. A parameter set for coal combustion was used to perform the study. Results of numerical simulations indicate that the model solutions contain two limiting cases: kinetically controlled andmass-transfer-controlled conversion front structures. The kinetically controlled solutions consist of a preheat zone at the upstream side of the front and a thin reaction zone at the downstream side. The mass-transfer-controlled solutions consist of a wide reaction zone with a maximum source term situated at the upstream part of the front. The analytical solution to the model equations is shown to give correct predictions in the kinetically controlled caseonly. In the presence of mass transfer, the solution predicts the trend of decreasing front velocity with increasing transport limitations correctly but does not show the correct functional dependence on the parameter describing transport limitations. In addition, the predictions become highly inaccurate. This is related to the fact that the effect of transport limitations is not accounted for in the analytical solution method. Therefore, numerical methods should be used to obtain generally valid solutions.