People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dolatshahi-Pirouz, Alireza
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Engineering Photo-Cross-Linkable MXene-Based Hydrogels:Durable Conductive Biomaterials for Electroactive Tissues and Interfacescitations
- 2024Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfacescitations
- 2023Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healingcitations
- 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interfacecitations
- 2022Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repaircitations
- 2021Design and construction of a novel measurement device for mechanical characterization of hydrogelscitations
- 2021Design and construction of a novel measurement device for mechanical characterization of hydrogels:A case studycitations
- 2021Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defectscitations
- 2021Rheological characterization of 3D printable geopolymerscitations
- 20193D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineeringcitations
- 20193D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineeringcitations
- 2019Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?citations
- 2019Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systemscitations
- 2019Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatincitations
- 2017Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissuescitations
- 2017Nanoreinforced hydrogels for tissue engineering:Biomaterials that are compatible with load-bearing and electroactive tissuescitations
- 2016Injectable shear-thinning nanoengineered hydrogels for stem cell deliverycitations
- 2011Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithographycitations
- 2010Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (GLAD)”
Places of action
Organizations | Location | People |
---|
article
Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems
Abstract
Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric amine-functionalized (PMSNs) samples, consecutively. These nanoparticles were characterized by scanning electron microscopy, zeta potential measurement, dynamic light scattering, BET (Brunauer, Emmett, Teller) analysis, and FTIR technique. In a 3D culture system, stem cells were encapsulated in alginate hydrogel in which MSNs of different functionalities were incorporated. The results showed good biocompatibility for both BMSNs and AMSNs in 2D and 3D culture systems. For these samples, the viability of about 80% was acquired after 2 weeks of 3D culture. When compared to the control, CMSNs caused higher cell proliferation in the 2D culture; while they showed cytotoxic effects in the 3D culture system. Interestingly, polymeric amine-functionalized silica nanoparticles (PMSNs) resulted in disrupted morphology and very low viability in the 2D cell culture and even less viability in 3D environment in comparison to BMSNs and AMSNs. This significant decrease in cell viability was attributed to the higher uptake values of highly positively charged PMSNs by cells as compared to other MSNs. This up-regulated uptake was evaluated by using an inductively coupled plasma optical emission spectroscopy instrument (ICP-OES). These results uncover different interactions between cell and nanoparticles with various surface chemistries. Building on these results, new windows are opened for employing biocompatible nanoparticles such as BMSNs and AMSNs, even at high concentrations, as potential cargos for carrying required growth and/or differentiation factors for tissue engineering applications.