People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gorzkiewicz, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Effcient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Ecient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Deliverycitations
- 2019Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitrocitations
- 2019PAMAM and PPI Dendrimers in Biophysical and Thermodynamic Studies on the Delivery of Therapeutic Nucleotides, Nucleosides and Nucleobase Derivatives for Anticancer Applicationcitations
- 2017Dendrimers as nanocarriers for nucleoside analoguescitations
Places of action
Organizations | Location | People |
---|
article
Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro
Abstract
The therapeutic effect of indomethacin, a water-insoluble non-steroidal anti-inflammatory drug, requires its efficient transport through cellular membranes and accumulation inside the target cells. The application of dendritic polymers has been proposed for the improvement of the drug’s solubility and intracellular delivery. In this study we evaluated the anti-inflammatory potential of novel, highly-biocompatible 4-carbomethoxypyrrolidone-coated PAMAM dendrimers loaded with indomethacin. Our results indicate that complexation with dendrimers do not hamper the inhibitory action of indomethacin towards cyclooxygenases. Drug-dendrimer formulations exhibited improved anti-inflammatory activity in in vitro-cultured cellular models, showing enhanced inhibition of prostaglandin secretion and significantly decreased expression of NF-κB marker genes compared to free drug.