People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ionov, Maksim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Ruthenium metallodendrimer against triple-negative breast cancer in micecitations
- 2023Combination of Copper Metallodendrimers with Conventional Antitumor Drugs to Combat Cancer in In Vitro Modelscitations
- 2023Combination of Copper Metallodendrimers with Conventional Antitumor Drugs to Combat Cancer in In Vitro Models
- 2023Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocolscitations
- 2023Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocolscitations
- 2023Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary studycitations
- 2022Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activitycitations
- 2021Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNAcitations
- 2020Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cellscitations
- 2020Copper (II) metallodendrimers combined with pro- apaoptotic siRNAs as a promising strategy against breast cancer cellscitations
- 2019Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimerscitations
- 2019Dendrimers and hyperbranched structures for biomedical applicationscitations
- 2019Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drugcitations
- 2019Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterialscitations
- 2018Ruthenium dendrimers as carriers for anticancer siRNAcitations
- 2015Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological actioncitations
- 2015Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interactioncitations
- 2013Natural and Synthetic Biomaterials as Composites of Advanced Drug Delivery Nano Systems (ADDNSS). Biomedical Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers
Abstract
Dendrimers are hyperbranched polymers for delivery of therapeutic genetic material to cancer cells. The fine tuning chemical modifications of dendrimers allow for the modification of the composition. The architecture and the properties of dendrimers are key factors to improve their in vitro and in vivo properties such as biocompatibility with cells and tissues and their pharmacokinetic/pharmacodynamic behavior. The side effects of dendrimers on structure and function of proteins is an important question that must be addressed. We herein describe the effect of newly synthesized piperidine-based cationic phosphorous dendrimers of 2 generations and commercial cationic, neutral and anionic poly(amidoamine) (PAMAM) dendrimers of 4th generation on immunochemical properties of 2 serum proteins: human serum albumin (HSA) and alpha-1-microglobulin (A1M). Both can bind and transfer ligands in blood, including hormones, fatty acids, toxins and drugs, and have immunoreactivity properties. Comparing the effects of piperidinium-terminated phosphorus and cationic, neutral and anionic PAMAM dendrimers on HSA and A1M, we conclude that, in the case of equimolar complexes, these dendrimers had no significant effect on immunoreactivity of proteins. In contrast, the formation of complexes in which a protein is fully bound to dendrimers leads to partial (1.2–2.3 times) reduction in protein immunoreactivity. The most important fact is that dendrimer-induced change in immunoreactivity of proteins is not complete, even if the protein is entirely bound by dendrimers. This means that the application of dendrimers in vivo will not totally hamper the immunoreactivity of these proteins and antibodies.