People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jędrzak, Artur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Ag, Cu, and Se-doped ultrasmall iron oxide colloidal gels: Revealing potential for photo/electrochemical applicationscitations
- 2019Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitrocitations
- 2018Polydopamine grafted on an advanced Fe <inf>3</inf> O <inf>4</inf> /lignin hybrid material and its evaluation in biosensingcitations
- 2018Cyclodextrin-based magnetic nanoparticles for cancer therapycitations
Places of action
Organizations | Location | People |
---|
article
Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro
Abstract
<p>Here we report the synthesis of multifunctional nanocarriers based on PAMAM dendrimers generation (G) 4.0, 5.0 and 6.0 fixed to polydopamine (PDA) coated magnetite nanoparticles (Fe<sub>3</sub>O<sub>4</sub>). Synthesized nanoplatforms were characterized by transmission electron microscopy (TEM), the electrokinetic (zeta) potential, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and magnetic resonance imaging (MRI). Further, we show as a proof of concept that nanocarriers functionalized with G 5.0 could be successfully applied in combined chemo- and photothermal therapy (CT-PTT) of the liver cancer cells. The cooperative effect of the modalities mentioned above led to higher mortality of cancer cells when compared to their individual performance. Moreover, the performed in vitro studies revealed that the application of dual therapy triggered the desired cell death mechanism-apoptosis. Furthermore, performed tests using Magnetic Resonance Imaging (MRI) showed that our materials have competitive contrast properties. Overall, the functionality of dendrimers has been extended by merging them with magnetic nanoparticles resulting in multifunctional hybrid nanostructures that are promising smart drug delivery system for cancer therapy.</p>