Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chassagne, Claire

  • Google
  • 12
  • 11
  • 182

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2022Tuning the rheological properties of kaolin suspensions using biopolymers11citations
  • 2022Rheology of Flocculated Suspension in Turbidity Currentscitations
  • 2022Effects of organic matter degradation in cohesive sediment9citations
  • 2022From fundamentals to implementation of yield stress for nautical bottom : case study of the Port of Hamburg4citations
  • 2022Why do settling and yield stress of mud differ in european ports?citations
  • 2022From fundamentals to implementation of yield stress for nautical bottom: Case study of the Port of Hamburg4citations
  • 2021Rheology of Mud5citations
  • 2020Using in situ density and strength measurements for sediment maintenance in ports and waterways20citations
  • 2020Yield stress measurements of mud sediments using different rheological methods and geometries46citations
  • 2019Is density enough to predict the rheology of natural sediments?29citations
  • 2019Rheological analysis of mud from Port of Hamburg, Germany49citations
  • 2017Dielectric spectroscopy of granular material in an electrolytesolution of any ionic strength5citations

Places of action

Chart of shared publication
Shakeel, Ahmad
11 / 16 shared
Kirichek, Alex
12 / 18 shared
Ali, Waqas
1 / 1 shared
Helmons, Rudy
1 / 1 shared
Ali, W.
1 / 7 shared
Enthoven, D. H. B.
1 / 1 shared
Gebert, Julia
2 / 2 shared
Zander, Florian
1 / 1 shared
Bornholdt, Jasper
2 / 2 shared
Ohle, Nino
2 / 2 shared
Ghose, Ranajit
1 / 1 shared
Chart of publication period
2022
2021
2020
2019
2017

Co-Authors (by relevance)

  • Shakeel, Ahmad
  • Kirichek, Alex
  • Ali, Waqas
  • Helmons, Rudy
  • Ali, W.
  • Enthoven, D. H. B.
  • Gebert, Julia
  • Zander, Florian
  • Bornholdt, Jasper
  • Ohle, Nino
  • Ghose, Ranajit
OrganizationsLocationPeople

article

Tuning the rheological properties of kaolin suspensions using biopolymers

  • Chassagne, Claire
  • Shakeel, Ahmad
  • Kirichek, Alex
  • Ali, Waqas
Abstract

Kaolin based suspensions have wide range of applications such as slurry wall, drilling fluids, adhesives, cosmetics, refractories and pharmaceuticals, due to their abundance in nature, low cost and non-swelling nature. On the other hand, the unique properties (i.e., biodegradability) of biopolymers make them suitable candidate for variety of applications including modification of clay suspensions. In this study, the rheological properties of kaolin suspensions modified with different biopolymers (xanthan gum (XG), sodium carboxymethyl cellulose (CMC), potato starch (PS), chitosan (Ch) and apple fibre (AF)) have been investigated by varying the biopolymer type, content and clay content. The main objective of the present study is to propose a substitute for the natural mud sample. Frequency sweep tests, stress ramp-up tests and time-dependent tests were performed by using the Couette geometry (coaxial cylinders) for the prepared suspensions.<br/><br/>The rheological results showed that both viscosity and moduli were significantly influenced by adding different biopolymers into the kaolin suspensions. For instance, an increase in viscosity of modified suspensions was observed: 3 – 4 orders of magnitude by adding xanthan gum (1 wt%) or sodium carboxymethyl cellulose (5 wt%) and 6 orders of magnitude by adding apple fibre (5 wt%). Likewise, the incorporation of different biopolymers significantly affected the complex modulus of modified clay suspensions. For example, similar or higher values of complex modulus than the pure kaolin suspension were observed at low xanthan gum or sodium carboxymethyl cellulose content (0.1 wt%). In case of chitosan, the complex modulus of the modified suspensions was higher than the complex modulus of pure kaolin suspension, even at very low polymer content (1 wt%). In the case of potato starch, a decrease in complex modulus by increasing polymer content till 10 wt% was observed followed by an increase in complex modulus with polymer content. The shear rate ramp-up and ramp-down experiments showed that the time-dependent behaviour of kaolin suspensions was not strongly influenced by adding different biopolymers. This knowledge will provide a base to choose a suitable substitute for the natural mud sample.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • Sodium
  • viscosity
  • cellulose
  • complex modulus