People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nadeem, Sohail
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024A stable metal ferrite Construction, physical Characterizations, and investigation magnetic properties in thin polymer filmscitations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Highly synergistic antibacterial activity of copper (II)-based nano metal–organic frameworkcitations
- 2023Excellent antimicrobial performances of Cu(II) metal organic framework@Fe3O4 fused cubic particlescitations
- 2022Coupling of Se-ZnFe2O4 with rGO for spatially charged separated nanocomposites as an efficient photocatalyst for degradation of organic pollutants in natural sunlightcitations
- 2022Photocatalytic Degradation of Yellow-50 Using Zno/Polyorthoethylaniline Nanocompositescitations
- 2022Facile Synthesis of Catalyst Free Carbon Nanoparticles From the Soot of Natural Oils
- 2022Acrylic Acid-Functionalized Cellulose Diacrylate-Carbon Nanocomposite Thin Filmcitations
- 2022Binary Co@ZF/S@GCN S-scheme heterojunction enriching spatial charge carrier separation for efficient removal of organic pollutants under sunlight irradiationcitations
- 2022Controlled preparation of grafted starch modified with Ni nanoparticles for biodegradable polymer nanocomposites and its application in food packagingcitations
- 2022Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible lightcitations
- 2022Well-defined heterointerface over the doped sulfur atoms in NiS@S-rGO nanocomposite improving spatial charge separation with excellent visible-light photocatalytic performancecitations
- 2021The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocompositecitations
- 2021Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging applicationcitations
Places of action
Organizations | Location | People |
---|
article
Coupling of Se-ZnFe2O4 with rGO for spatially charged separated nanocomposites as an efficient photocatalyst for degradation of organic pollutants in natural sunlight
Abstract
<p>Water pollution is a major issue nowadays. Textile effluents majorly consist of synthetic dyes whose degradation is quite difficult, and they pollute water by producing toxins through many reactions. Iron nanoparticles are considered the most efficient photocatalysts for the degradation of such toxins. In this paper, the photocatalytic efficiency of Se-ZnFe<sub>2</sub>O<sub>4</sub> @GO and Se-ZnFe<sub>2</sub>O<sub>4</sub> @rGO nanocomposites were checked against MB dye. The graphene oxide (GO) and graphene oxide (rGO) were prepared via modified Hummer's and solvothermal methods, respectively. While Se-ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles were prepared by sol-gel method and then GO and rGO was embedded on Se-ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles to prepare Se-ZnFe<sub>2</sub>O<sub>4</sub> @GO and Se-ZnFe<sub>2</sub>O<sub>4</sub> @rGO nanocomposites respectively. The prepared nanoparticles and nanocomposites were characterized by various techniques i.e., FTIR, EPR, SEM, XRD, EIS, and UV–vis spectroscopy. Among all the prepared nanoparticles and nanocomposites, the novel Se-ZnFe<sub>2</sub>O<sub>4</sub> @rGO nanocomposites showed 98% degradation of methylene blue after 150 min and thus be considered as an excellent photocatalyst.</p>