People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hassouna, Fatima
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Flexible, ultrathin and light films from one-dimensional nanostructures of polypyrrole and cellulose nanofibers for high performance electromagnetic interference shieldingcitations
- 2023Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Predictioncitations
- 2022Tailor-made dual doping for morphology control of polyaniline chains in cellulose nanofiber-based flexible electrodes: electrical and electrochemical performancecitations
- 2021Elaboration and properties of nanofibrillated cellulose composites with polypyrrole nanotubes or their carbonized analogscitations
- 2020New approach for the development of reduced graphene oxide/polyaniline nanocomposites via sacrificial surfactant-stabilized reduced graphene oxidecitations
- 2020Impact of Hot-Melt Extrusion Processing Conditions on Physicochemical Properties of Amorphous Solid Dispersions Containing Thermally Labile Acrylic Copolymercitations
- 2020Temperature modulated polymer nanoparticle bonding: A numerical and experimental studycitations
Places of action
Organizations | Location | People |
---|
article
Temperature modulated polymer nanoparticle bonding: A numerical and experimental study
Abstract
In this research, we investigated the impact of nanoparticle adhesive properties on the size of micro-clusters formed during shear-induced aggregation at different temperatures. To precisely control particle adhesion, we used nanoparticles with a core-shell structure, where the core is composed of polymethyl methacrylate and the shell is composed of a combination of polymethyl methacrylate and polybutylacrylate. Due to significantly different glass transition temperature (T-g) of these polymers, the core act as a hard-sphere, while the presence of polybutylacrylate in the shell, with a glass transition temperature of 50 degrees C, gives the surface mechanical softness upon increasing temperature. We observed that the size of the aggregates grow significantly when the temperature rises above T-g, indicating an increase of adhesive force between the nanoparticles. Under these conditions, the surface of the nanoparticles exhibits a transition from plastic to viscous behavior that allows core-shell nanoparticles to bond physically upon contact in a controlled coalescence effect. To further investigate the micro-mechanical behavior of the micro-clusters during aggregation, a numerical study of a simple shear flow setup using CFD-DEM with a customized particle interaction model was carried out. This model has the capability to describe non-contact as well as contact forces present in colloidal systems. Depending on the system temperature, the model can simulate either elastic, elastic-plastic or viscoplastic deformation between the interacting nanoparticles. Using this feature, it is demonstrated that it is possible to reproduce the experimentally observed growth in aggregates with temperature rise by simulating an increase in adhesion using primary particle mechanical parameters. Furthermore, these results clearly demonstrate the direct relation between surface properties of the nanoparticles with the macroscopic behavior of the colloidal system.