Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dendisova, Marcela

  • Google
  • 6
  • 24
  • 55

University of Chemistry and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Characterization of Modified PVDF Membranes Using Fourier Transform Infrared and Raman Microscopy and Infrared Nanoimaging: Challenges and Advantages of Individual Methods2citations
  • 2023Flexible, ultrathin and light films from one-dimensional nanostructures of polypyrrole and cellulose nanofibers for high performance electromagnetic interference shielding11citations
  • 2022Tailor-made dual doping for morphology control of polyaniline chains in cellulose nanofiber-based flexible electrodes: electrical and electrochemical performance4citations
  • 2021Elaboration and properties of nanofibrillated cellulose composites with polypyrrole nanotubes or their carbonized analogs17citations
  • 2021Immobilization of green-synthesized silver nanoparticles for micro- and nano-spectroscopic applications: What is the role of used short amino- and thio-linkers and immobilization procedure on the SERS spectra?5citations
  • 2020New approach for the development of reduced graphene oxide/polyaniline nanocomposites via sacrificial surfactant-stabilized reduced graphene oxide16citations

Places of action

Chart of shared publication
Král, Martin
1 / 2 shared
Kopal, Ivan
1 / 3 shared
Kmetík, Matěj
1 / 1 shared
Vilčáková, Jarmila
1 / 28 shared
Sedlačík, Michal
2 / 4 shared
Kopecký, Dušan
4 / 7 shared
Hassouna, Fatima
4 / 7 shared
Lapka, Tomáš
2 / 2 shared
Prokeš, Jan
2 / 8 shared
Moučka, Robert
1 / 8 shared
Prokeš, J.
1 / 12 shared
Ulbrich, Pavel
3 / 4 shared
Lhotka, Miloslav
1 / 3 shared
Jurča, M.
1 / 1 shared
Soukupová, Gabriela
1 / 1 shared
Mazúr, Petr
3 / 3 shared
Bautkinová, Tereza
2 / 2 shared
Volochanskyi, Oleksandr
1 / 1 shared
Švecová, Marie
1 / 2 shared
Palounek, David
1 / 1 shared
Matějka, Pavel
1 / 4 shared
Laachachi, A.
1 / 7 shared
Kutorglo, Edith Mawunya
1 / 1 shared
Sifton, A.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Král, Martin
  • Kopal, Ivan
  • Kmetík, Matěj
  • Vilčáková, Jarmila
  • Sedlačík, Michal
  • Kopecký, Dušan
  • Hassouna, Fatima
  • Lapka, Tomáš
  • Prokeš, Jan
  • Moučka, Robert
  • Prokeš, J.
  • Ulbrich, Pavel
  • Lhotka, Miloslav
  • Jurča, M.
  • Soukupová, Gabriela
  • Mazúr, Petr
  • Bautkinová, Tereza
  • Volochanskyi, Oleksandr
  • Švecová, Marie
  • Palounek, David
  • Matějka, Pavel
  • Laachachi, A.
  • Kutorglo, Edith Mawunya
  • Sifton, A.
OrganizationsLocationPeople

article

New approach for the development of reduced graphene oxide/polyaniline nanocomposites via sacrificial surfactant-stabilized reduced graphene oxide

  • Kopecký, Dušan
  • Ulbrich, Pavel
  • Laachachi, A.
  • Hassouna, Fatima
  • Kutorglo, Edith Mawunya
  • Dendisova, Marcela
  • Mazúr, Petr
  • Bautkinová, Tereza
  • Sifton, A.
Abstract

An aggregation of graphene oxide (GO) during its reduction to reduced graphene oxide (rGO) limits its performance in nanocomposites. The use of rGO stabilized by a sacrificial surfactant should overcome this limitation and it yields nanocomposites with enhanced properties. A new, simple and cost-effective approach for the synthesis of polyaniline (PANI) nanocomposites based on rGO stabilized by a sacrificial surfactant was developed. Two routes of synthesis, the in situ and ex situ reduction, were compared. The former involved the reduction of GO already coated by PANI, forming rGO/PANIin whereas the latter involved the reduction of GO in the presence of a sacrificial surfactant to well-exfoliated rGO sheets followed by polymerization of aniline, forming rGO/PANIex. Differences in morphology and physical properties between rGO/PANIin and rGO/PANIex correlated with their chemical structure were raised. Accordingly, rGO/PANIin exhibited higher thermal stability but lower electrical conductivity (0.01 S·cm−1) compared to neat PANI (0.11 S·cm−1), while rGO/PANIex demonstrated thermal properties comparable to those of PANI and remarkable electrical conductivity (∼ 280 S·cm−1). Mechanistic insights into the interactions between rGO and PANI are proposed. © 2020

Topics
  • nanocomposite
  • morphology
  • forming
  • electrical conductivity
  • surfactant