People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Campbell, Richard A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant:Transition from synergy to competition
- 2021Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterningcitations
- 20203D texturing of the air–water interface by biomimetic self-assemblycitations
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2019Polydopamine layer formation at the liquid – gas interfacecitations
- 2016Smart nanogels at the air/water interfacecitations
- 2016Smart nanogels at the air/water interface:Structural studies by neutron reflectivitycitations
- 2015On the formation of dendrimer/nucleolipids surface films for directed self-assemblycitations
- 2013New method to predict the surface tension of complex synthetic and biological polyelectrolyte/surfactant mixturescitations
- 2011Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometrycitations
- 2011Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometrycitations
- 2011Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate at the Air-Water Interface Studied by Neutron Reflectometrycitations
- 2010New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixturescitations
- 2010New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixturescitations
- 2010New Perspective on the Cliff Edge Peak in the Surface Tension of Oppositely Charged Polyelectrolyte/Surfactant Mixturescitations
- 2008Competitive adsorption of neutral comb polymers and sodium dodecyl sulfate at the air/water interfacecitations
- 2007Dynamics of adsorption of an oppositely charged polymer-surfactant mixture at the air-water interfacecitations
- 2005External reflection fourier transform infrared spectroscopy of surfactants at the air-water interface:Separation of bulk and adsorbed surfactant signalscitations
- 2005External reflection fourier transform infrared spectroscopy of surfactants at the air-water interfacecitations
- 2004External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylindercitations
Places of action
Organizations | Location | People |
---|
article
Polydopamine layer formation at the liquid – gas interface
Abstract
The surface properties of a polydopamine layer at the air-water interface were studied by dilatational surface rheology, ellipsometry and Brewster angle microscopy (BAM). A significant increase of the dynamic surface elasticity was discovered when the concentration changed from 0.75 g/l to 2 g/l with the maximum value of about 60 mN/m at a concentration of 1 g/l. The obtained results indicate that the surface film consists of separate domains and the high surface elasticity is a consequence of the interactions between relatively rigid domains of the polymer film. This conclusion was confirmed by Brewster angle microscopy, which demonstrated different steps of the polydopamine film growth. Separate domains appeared at the first step while one can observe a continuous film close to equilibrium. An increase of the initial concentration led to faster polymerization and to the formation of a thicker film. The dynamic surface elasticity decreased in the concentration range from 2 g/l to 5 g/l when the thickness of the polymer film reached about 80 nm. In this case the film could be destroyed in the course of deformation. The cracks in the film resulted in a decrease of the dynamic surface elasticity.