Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhattacharyya, Arup R.

  • Google
  • 4
  • 7
  • 235

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Melt-mixed composites of multi-walled carbon nanotubes and thermotropic liquid crystalline polymer26citations
  • 2017Development of microstructure and evolution of rheological characteristics of a highly concentrated emulsion during emulsification17citations
  • 2005Composites of Polycarbonate with Multiwalled Carbon Nanotubes Produced by Melt Mixingcitations
  • 2003Melt mixing of polycarbonate/multi-wall carbon nanotube composites192citations

Places of action

Chart of shared publication
Joseph, Kuruvilla
1 / 3 shared
Vivek, R.
1 / 2 shared
Kandy, Sharu Bhagavathi
1 / 1 shared
Zank, Johann
1 / 1 shared
Goering, Harald
2 / 4 shared
Pötschke, Petra
2 / 330 shared
Janke, Andreas
2 / 10 shared
Chart of publication period
2017
2005
2003

Co-Authors (by relevance)

  • Joseph, Kuruvilla
  • Vivek, R.
  • Kandy, Sharu Bhagavathi
  • Zank, Johann
  • Goering, Harald
  • Pötschke, Petra
  • Janke, Andreas
OrganizationsLocationPeople

article

Development of microstructure and evolution of rheological characteristics of a highly concentrated emulsion during emulsification

  • Kandy, Sharu Bhagavathi
  • Bhattacharyya, Arup R.
  • Zank, Johann
Abstract

<p>The refining characteristics of the highly concentrated water-in-oil emulsion, which are used as ‘emulsion precursors’ for the preparation of emulsion explosives, were investigated to elucidate the manner in which the refining time influences its microstructure and rheological behaviour. The development of microstructure at various stages of the emulsification process has been studied in detail and an empirical correlation between the characteristic droplet size and refining time has been proposed. The evolution of rheological characteristics of the emulsion during the microstructure refinement has been investigated through different protocols of the dynamic and steady-state rheology. An extended refining led to a finer microstructure and resulted in an increase in the elastic modulus, yield stress and viscosity of the emulsion. The droplet size dependency of the elasticity and the yield stress during the refining have also been discussed. The network structure of the dispersed phase, the droplet size and the corresponding interdroplet interactions all govern the rheological characteristics of the final emulsion.</p>

Topics
  • microstructure
  • phase
  • viscosity
  • elasticity