People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suryanto, Benny
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Probabilistic approach to the sustainability assessment of reinforced concrete structures in conditions of climate changecitations
- 2023Features of Immittance Spectra as Performance Indicators for Cement-Based Concretescitations
- 2021The electro-mechanical tensile properties of an engineered cementitious compositecitations
- 2021Low Carbon Recycled Aggregate Concrete
- 2021Cover-zone protective qualities under corrosive environmentscitations
- 2020Moisture movement within concrete exposed to simulated hot arid/semi-arid conditionscitations
- 2020Assessing the performance and transport properties of concrete using electrical property measurementscitations
- 2019Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawingcitations
- 2019In-Situ Conductivity Measurements to Monitor Moisture Profiles of Concrete in Hot Climates
- 2018Impedance measurements on an engineered cementitious composite: a critical evaluation of testing protocolscitations
- 2018Performance assessment of reinforced concrete after long-term exposure to a marine environmentcitations
- 2018Transient moisture profiles in cover-zone concrete during water absorptioncitations
- 2017Characterization of fly-ash using electrochemical impedance spectroscopycitations
- 2017A Testing Methodology for Performance-Based Specificationcitations
- 2017Frequency- and Time- Domain Dependency of Electrical Properties of Cement-Based Materials During Early Hydrationcitations
- 2016Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscopecitations
- 2016Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based modelscitations
- 2016Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious compositecitations
- 2015Two-point concrete resistivity measurementscitations
Places of action
Organizations | Location | People |
---|
article
Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawing
Abstract
<p>The influence of freezing and thawing on the complex electrical impedance of Portland cement mortars is presented with measurements obtained over the bandwidth 20 Hz–1 MHz. Samples were exposed to a cyclic temperature regime within the range −70 °C to +20 °C. In addition to Nyquist plots, the bulk conductivity and permittivity were de-embedded from the impedance measurements and presented in the frequency domain to study ice formation/thawing, and its influence on conduction and polarisation processes within the capillary and gel pore network. The activation energy for bulk ionic conduction and polarisation processes was also established using an Arrhenius relationship and it was shown that hysteresis was present over a significant portion of the thermal cycle. Where hysteresis effects were present, the conductivity of the sample was lower on thawing portion of the cycle than on the freezing. It was also shown that when the bulk conductivity was presented in an Arrhenius format, four distinct regions were identified on the cooling part of the cycle, whereas on the heating part of the cycle only two regions were present. It was found that the contribution of dissipative conduction processes to the overall conduction increased with decreasing temperature and with increasing frequency. The water/cement ratio is shown to have a significant influence on complex impedance measurements, the depression in freezing and melting point of the pore-water and activation energy.</p>