People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jankova, Katja Jankova
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Low friction thermoplastic polyurethane coatings imparted by surface segregation of amphiphilic block copolymerscitations
- 2020From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolidescitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2015Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogelscitations
- 2012Poly(ethylene-co-butylene) functionalized multi walled carbon nanotubes applied in polypropylene nanocompositescitations
- 2011Functional Block Copolymers as Compatibilizers for Nanoclays in Polypropylene Nanocomposites
- 2010Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistrycitations
- 2008Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion
- 2007Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion.
Places of action
Organizations | Location | People |
---|
article
Low friction thermoplastic polyurethane coatings imparted by surface segregation of amphiphilic block copolymers
Abstract
This study aims to hydrophilize thermoplastic polyurethane (TPU) surface via selective segregation of amphiphilic block copolymers from bulk TPU matrix, namely “inverted grafting-to” approach. To this end, hydrophilic poly(ethylene glycol) (PEG) polymer chain was employed in either diblock (polycaprolactone-b-poly(ethylene glycol) (PCL-b-PEG)) or triblock (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEG-b-PPO-b-PEG)) amphiphilic copolymer additives in polymer matrix. Greatly reduced water contact angles, as low as ca. 13°, from ≥90° for bare substrate proved the successful hydrophilization of TPU surface by this approach, although the degree of hydrophilization was significantly affected by the structure and concentration of embedded amphiphilic copolymers. Moreover, PEG-functionalized TPU surfaces in this approach displayed a reduction of coefficient of friction (COF) by two orders of magnitude. Given that TPU is a widely used material for urinary catheter or other medical devices, we demonstrated a first promising application as lubricious coating to TPU-based urinary catheter tubes.