People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Naskar, Susmita
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Nonlinear stability of curved multi-phase composite panels: influence of agglomeration in randomly distributed carbon nanotubes with non-uniform in-plane loadscitations
- 2023Data-driven multiscale modeling and robust optimization of composite structure with uncertainty quantificationcitations
- 2023Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass - A strength performance and sustainability analysiscitations
- 2023Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass - A strength performance and sustainability analysiscitations
- 2023Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysiscitations
- 2023Multilevel fully integrated electromechanical property modulation of functionally graded graphene‐reinforced piezoelectric actuators: coupled effect of poling orientationcitations
- 2023Sustainable metal-organic framework co-engineered glass fiber separators for safer and longer cycle life of Li-S batteriescitations
- 2023On characterizing the viscoelastic electromechanical responses of functionally graded graphene-reinforced piezoelectric laminated compositescitations
- 2023Viscoelastic free vibration analysis of in-plane functionally graded orthotropic plates integrated with piezoelectric sensors: Time-dependent 3D analytical solutionscitations
- 2023Programmed Out-of-Plane curvature to enhance multimodal stiffness of bending-dominated composite latticescitations
- 2023Effective elastic moduli of space-filled multi-material composite latticescitations
- 2023Micro scratch behavior study of titanium dioxide and graphene nanoplatelets reinforced polymer nanocomposites
- 2022Compound influence of surface and flexoelectric effects on static bending response of hybrid composite nanorodcitations
- 2021Analytical Solution for Static and Dynamic Analysis of Graphene-Based Hybrid Flexoelectric Nanostructurescitations
- 2021Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTscitations
- 2020Stochastic Oblique Impact on Composite Laminates: A Concise Review and Characterization of the Essence of Hybrid Machine Learning Algorithmscitations
- 2019Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced compositescitations
- 2018Effect of delamination on the stochastic natural frequencies of composite laminatescitations
- 2013Investigation into metal wire based variant of EMI technique for structural health monitoring
Places of action
Organizations | Location | People |
---|
article
Effective elastic moduli of space-filled multi-material composite lattices
Abstract
Traditionally lattice materials are made of a network of beams in two and three dimensions with majority of the lattice volume being void space. Recently researchers have started exploring ways to exploit this void space for multi-physical property modulation of lattices such as global mechanical behaviour including different elastic moduli, wave propagation, vibration, impact and acoustic features. The elastic moduli are of crucial importance to ensure the structural viability of various multi-functional devices and systems where a space-filled lattice material could potentially be used. Here we develop closed-form analytical expressions for the effective elastic moduli of space-filled lattices based on an exact stiffness matrix approach coupled with the unit cell method, wherein transcendental shape functions are used to obtain exact solutions of the underlying differential equation. This can be viewed as an accurate multi-material based generalisation of the classical formulae for elastic moduli of honeycombs. Numerical results show that the effective in-plane elastic moduli can increase by orders of magnitude with a relatively lower infill stiffness (∼10%). This gives an exceptional opportunity to engineer multi-material lattices with optimal specific stiffness along with characterising the mechanical properties of a multitude of lattice-like artificial and naturally occurring structural forms with space filling.