People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Galvita, Vladimir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Controlling Pt nanoparticle sintering by sub-monolayer MgO ALD thin filmscitations
- 2024Evolution of low Z-elements in a Ni/MgFeAlO 4 catalyst during reaction : insight from in situ XRScitations
- 2023High temperature H2S removal via CO2-assisted chemical looping over ZrO2-modified Fe2O3citations
- 2022Upcycling the carbon emissions from the steel industry into chemicals using three metal oxide loopscitations
- 2022Preferential oxidation of H2 in CO-rich streams over a Ni/γ-AI2o3 catalyst : an experimental and first-principles microkinetic studycitations
- 2022Decarbonisation of steel mill gases in an energy-neutral chemical looping processcitations
- 2021Microstructured ZrO2 coating of iron oxide for enhanced CO2 conversioncitations
- 2021In situ XAS/SAXS study of Al2O3-coated PtGa catalysts for propane dehydrogenationcitations
- 2020Hierarchical Fe-modified MgAl2O4 as Ni-catalyst support for methane dry reformingcitations
- 2020Ethanol dehydrogenation over Cu catalysts promoted with Ni : stability controlcitations
- 2020FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2 conversioncitations
- 2019Pressure-induced deactivation of core-shell nanomaterials for catalyst assisted chemical loopingcitations
- 2019Carbon capture and utilization in the steel industry : challenges and opportunities for chemical engineeringcitations
- 2019Carbon capture and utilization in the steel industry : challenges and opportunities for chemical engineeringcitations
- 2019Fe2O3-MgAl2O4 for CO production from CO2 : Mössbauer spectroscopy and in situ X-ray diffractioncitations
- 2018PdZn nanoparticle catalyst formation for ethanol dehydrogenation : active metal impregnation vs incorporationcitations
- 2018Ni nanoparticles and the Kirkendall effect in dry reforming of methanecitations
- 2017Controlling the stability of a Fe-Ni reforming catalyst : structural organization of the active componentscitations
- 2017CO production from CO2 via reverse water–gas shift reaction performed in a chemical looping mode : kinetics on modified iron oxidecitations
- 2017Size- and composition-controlled Pt–Sn bimetallic nanoparticles prepared by atomic layer depositioncitations
- 2016Atomic layer deposition route to tailor nanoalloys of noble and non-noble metalscitations
- 2016Hydrogen and carbon monoxide production by chemical looping over iron-aluminium oxidescitations
- 2016Deactivation study of Fe2O3−CeO2 during redox cycles for CO production from CO2citations
- 2016Kinetics of multi-step redox processes by time-resolved In situ X-ray diffractioncitations
- 2015Mg-Fe-Al-O for advanced CO2 to CO conversion: carbon monoxide yield vs. oxygen storage capacitycitations
- 2014Delivering a modifying element to metal nanoparticles via support: Pt-Ga alloying during the reduction of Pt/Mg(Al,Ga)Ox catalysts and its effects on propane dehydrogenationcitations
Places of action
Organizations | Location | People |
---|
article
Carbon capture and utilization in the steel industry : challenges and opportunities for chemical engineering
Abstract
The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the coming decade and the only way to substantially reduce the associated CO2 emissions is to combine it with Carbon Capture and Utilization (CCU) and/or Carbon Capture and Storage (CCS). CCU options that do not require a lot of hydrogen and with high added value are logical step stones towards production of bulk chemicals and even fuels such as oxymethylene ethers. BF waste gas recycling and conversion will require a multisectoral approach creating new dependencies between the steel, energy, and chemical sectors. Energy efficient, cheap and CO2 free hydrogen production using green electricity is the ultimate solution to drive this transition. This hydrogen could on the long term also open the door to replace blast furnaces by hydrogen-based steel making. However, today it makes economically more sense to use thermally produced hydrogen by (bio)methane pyrolysis or steam reforming, potentially electrified and intensified, rather than from water electrolysis. Having novel and existing elements from the chemical engineers' toolbox such as artificial intelligence, catalysis and reaction engineering, process intensification principles and multiscale modeling and design, should bring these emerging technologies within reach by the end of the next decade.