People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maroto-Valer, Mercedes
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024From brew to clean fuelcitations
- 2022Production of CH4 and CO on CuxO and NixOy coatings through CO2 photoreductioncitations
- 2022Core-shell TiO2-x-CuyO microspheres for photogeneration of cyclic carbonates under simulated sunlightcitations
- 2021Laser-manufactured glass microfluidic devices with embedded sensors
- 2021Comparative study of CO2 photoreduction using different conformations of CuO photocatalystcitations
- 2021Maskless laser prototyping of glass microfluidic devices
- 2020The effect of the layer-interlayer chemistry of LDHs on developing high temperature carbon capture materialscitations
- 2019Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glasscitations
- 2019Understanding Reactive Flow in Porous Media for CO2 Storage Applications
- 2019Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impactscitations
- 2019Photo-generation of cyclic carbonates using hyper-branched Ru-TiO2citations
- 2018Laser-based fabrication of microfluidic devices for porous media applicationscitations
- 2018Rapid Laser Manufacturing of Microfluidic Devices from Glass Substratescitations
- 2017Fabrication of three-dimensional micro-structures in glass by picosecond laser micro-machining and welding
- 2017Coal-derived unburned carbons in fly ash: A reviewcitations
- 2015Evaluation of a Flue Gas Desulphurisation (FGD)-Gypsum from a Wet Limestone FGD as Adsorbent for Removal of Selenium in Water Streamscitations
- 2012Micro-silica for high-end application from carbon capture and storage by mineralisationcitations
- 2002Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agentscitations
Places of action
Organizations | Location | People |
---|
article
Coal-derived unburned carbons in fly ash: A review
Abstract
Unburned carbon (UC) in fly ash indicates inefficiency in combustion and may be an impediment to the beneficial use of fly ash or ash products in a variety of applications. The characteristics of the coal-derived UC are a function of the rank and type of the coal, as well as the size of the feed coal and the combustion conditions. At any coal rank, inertinite macerals are inherently more difficult to combust than the associated vitrinite, and some will have a tendency to appear in the fly ash more or less unchanged from their appearance in the feed coal. The nature of UCs resulting from vitrinite is dependent upon the coal rank. Low-rank huminite/vitrinite will tend to form an isotropic char; bituminous vitrinite will appear as isotropic and anisotropic cokes; and anthracite vitrinite, naturally anisotropic, is observed as partially combusted vitrinite fragments in the ash.<br/><br/>The absorption of air entraining agents by UCs limits the use of high-UC fly ashes as a Portland cement substitute, with both standards organizations and regulatory bodies imposing limits on the acceptable UC concentrations. UC in fly ash can be used to adsorb organic compounds (such as phenols, dyes, herbicides, polychlorinated biphenyls, and petroleum constituents) and to capture trace elements (particularly Hg) from flue gas. UCs can also be used as sources of activated carbons, manufacture of graphite, and cokes in the metallurgical industry, as well as a source of carbon to feed back into the boiler.<br/><br/>Beneficiation of fly ash to segregate relatively UC-free or UC-rich splits for beneficial re-use can be done by size classification, electrostatic separation, and froth flotation, as well as density separation, acid digestion, and incipient fluidization. Thermal processing may also be used to burn off the UC, leaving a relatively UC-free fly ash as the product.