Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Richardson, Malcolm

  • Google
  • 1
  • 6
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020High-volume culture and quantitative real-time PCR for the detection of Aspergillus in sputum72citations

Places of action

Chart of shared publication
Denning, David
1 / 1 shared
Walker, Adam
1 / 1 shared
Moore, Caroline B.
1 / 1 shared
Richardson, Riina
1 / 3 shared
Vergidis, Paschalis
1 / 1 shared
Novak Frazer, Lilyann
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Denning, David
  • Walker, Adam
  • Moore, Caroline B.
  • Richardson, Riina
  • Vergidis, Paschalis
  • Novak Frazer, Lilyann
OrganizationsLocationPeople

article

High-volume culture and quantitative real-time PCR for the detection of Aspergillus in sputum

  • Denning, David
  • Richardson, Malcolm
  • Walker, Adam
  • Moore, Caroline B.
  • Richardson, Riina
  • Vergidis, Paschalis
  • Novak Frazer, Lilyann
Abstract

Objectives. Sputum culture is an insensitive method for the diagnosis of pulmonary aspergillosis. Growth of the organism allows identification of the causative species and susceptibility testing, both of which can inform treatment choices. The current practice is to culture an aliquot of diluted sputum. We assessed the value of culturing large volumes of unprocessed sputum, a method that we have termed high-volume culture (HVC).Methods. Specimens were processed by conventional culture (using an aliquot of homogenized, diluted sputum on Sabouraud agar at 37°C and 45°C for up to 5 days) and HVC (using undiluted sputum on Sabouraud agar at 30°C for up to 14 days). A separate specimen was tested by quantitative real-time PCR (qPCR). Antifungal susceptibility testing was performed by the EUCAST standard.Results. We obtained sputum specimens from 229 patients with the following conditions: Chronic pulmonary aspergillosis (66.8%, 153/229), allergic bronchopulmonary aspergillosis (25.3%, 58/229) and Aspergillus bronchitis (7.9%, 18/229).Patients with invasive pulmonary aspergillosis were not included. The positivity rate of conventional culture was 15.7% (36/229,95% CI: 11.6-21.0%) and that of HVC was 54.2% (124/229, 95% CI: 47.7-60.5%) (p<0.001). The higher positivity rate of HVC was demonstrated regardless of administration of antifungal treatment. qPCR had an overall positivity rate of 49.2% (65/132, 95% CI: 40.9-57.7%), comparable to that of HVC.Conclusion. Detection of Aspergillus spp. in sputum is greatly enhanced by HVC. HVC allows for detection of azole-resistant isolates that would have been missed by conventional culture. This method can be performed in any microbiology laboratory without the need for additional equipment.

Topics
  • impedance spectroscopy
  • susceptibility
  • chemical ionisation