Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yin, B. B.

  • Google
  • 3
  • 4
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024A coupled 3D thermo-mechanical peridynamic model for cracking analysis of homogeneous and heterogeneous materials29citations
  • 2022Modeling Thermomechanical Behaviors of Double-Skin Glass Facades under a Firecitations
  • 2021A phase-field thermomechanical framework for modeling failure and crack evolution in glass panes under fire17citations

Places of action

Chart of shared publication
Kodur, V. K. R.
1 / 4 shared
Akbar, Arslan
1 / 15 shared
Sun, Weikang
1 / 1 shared
Abdoh, Daud
2 / 3 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Kodur, V. K. R.
  • Akbar, Arslan
  • Sun, Weikang
  • Abdoh, Daud
OrganizationsLocationPeople

article

A phase-field thermomechanical framework for modeling failure and crack evolution in glass panes under fire

  • Abdoh, Daud
  • Yin, B. B.
Abstract

This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior.

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • glass
  • glass
  • crack
  • fracture behavior