People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bak, Brian Lau Verndal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024MatrixCraCS: Automated tracking of matrix crack development in GFRP laminates undergoing large tensile strains
- 2023Benchmark test for mode I fatigue-driven delamination in GFRP composite laminatescitations
- 2023Benchmark test for mode I fatigue-driven delamination in GFRP composite laminates: Experimental results and simulation with the inter-laminar damage model implemented in SAMCEFcitations
- 2022Simulation of Wrinkling during Forming of Binder Stabilized UD-NCF Preforms in Wind Turbine Blade Manufacturingcitations
- 2022Delamination toughening of composite laminates using weakening or toughening interlaminar patches to initiate multiple delaminationscitations
- 20213D progressive fatigue delamination model:Deliverable 5.1
- 20213D progressive fatigue delamination model
- 2021A simple MATLAB draping code for fiber-reinforced composites with application to optimization of manufacturing process parameterscitations
- 2021Transition-behaviours in fatigue-driven delamination of GFRP laminates following step changes in block amplitude loadingcitations
- 2021UPWARDS Deliverable D5.4:Report and data on the effect of fatigue loading history on damage development
- 2021A continuum damage model for composite laminatescitations
- 2019Formulation of a mixed-mode multilinear cohesive zone law in an interface finite element for modelling delamination with R-curve effectscitations
- 2019An evaluation of mode-decomposed energy release rates for arbitrarily shaped delamination fronts using cohesive elementscitations
- 2019Experimental characterization of delamination in off-axis GFRP laminates during mode I loadingcitations
- 2017A benchmark study of simulation methods for high-cycle fatigue-driven delamination based on cohesive zone modelscitations
- 2015Progressive Damage Simulation of Laminates in Wind Turbine Blades under Quasistatic and Cyclic Loading
- 2015Simulation Methods for High-Cycle Fatigue-Driven Delamination using Cohesive Zone Models - Fundamental Behavior and Benchmark Studies
Places of action
Organizations | Location | People |
---|
article
An evaluation of mode-decomposed energy release rates for arbitrarily shaped delamination fronts using cohesive elements
Abstract
Computing mode-decomposed energy release rates in arbitrarily shaped delaminations involving large fracture process zones has not been previously investigated. The J-integral is a suitable method for calculating this, because its domain-independence can be employed to reduce the integration domain to a cohesive interface, and reduce it to a line integral. However, the existing formulations for the evaluation of the mode-decomposed J-integrals rely on the assumption of negligible fracture process zones. In this work, a method for the computation of the mode-decomposed J-integrals in three-dimensional problems involving large fracture process zones and using the cohesive zone model approach is presented. The formulation is applicable to curved fronts with non-planar crack faces. A growth driving direction criterion, which takes into account the loading state at each point, is used to render the integration paths and to decompose the J-integral into loading modes. This results in curved and non-planar integration paths crossing the cohesive zone. Furthermore, its implementation into the finite element framework is also addressed. The formulation is validated against virtual crack closure technique (VCCT) and linear elastic fracture mechanics (LEFM)-based analytical solutions and the significance and generality of the formulation are demonstrated with crack propagation in a three-dimensional composite structure.