People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adam, Clayton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020The effect of vertebral body stapling on spine biomechanics and structure using a bovine modelcitations
- 2014Gravity-induced coronal plane joint moments in the adolescent scoliotic spine
- 2014Segmental torso masses in adolescent idiopathic scoliosiscitations
- 2014The effect of repeated loading and freeze - thaw cycling on immature bovine thoracic motion segment stiffnesscitations
- 2014The effect of intervertebral staple insertion on bovine spine segment stiffness
- 2014Intervertebral staple grading system with micro-CT
- 2013Segmental torso masses and gravity-induced coronal plane joint moments in adolescent idiopathic scoliosis
- 2013The effect of testing protocol on immature bovine thoracic spine segment stiffness
- 2013Segmental torso masses and coronal plane joint torques in the adolescent scoliotic spine
- 2010Fusionless scoliosis correction using shape memory alloy staples
- 2009Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foamcitations
- 2006Development of a method to validate computer models of the spine for scoliosis correction surgery simulation
- 2002Finite element analysis of high strain rate superplastic forming (SPF) of Al–Ti alloyscitations
Places of action
Organizations | Location | People |
---|
article
The effect of vertebral body stapling on spine biomechanics and structure using a bovine model
Abstract
<p>Background: Adolescent idiopathic scoliosis is a common condition affecting 2.5% of the general population. Vertebral body stapling was introduced as a method of fusionless growth modulation for the correction of moderate idiopathic scoliosis (Cobb angles of 20–40°), and was claimed to be more effective than bracing and less invasive than fusion. The aim of this study was to assess the effect of vertebral body stapling on the stiffness of a thoracic motion segment unit under moment controlled load, and to assess the vertebral structural damage caused by the staples. Methods: Thoracic spine motion segments from 6 to 8 week old calves (n=14) were tested in flexion/extension, lateral bending, and axial rotation. The segments were tested un-instrumented, then a left anterolateral intervertebral Shape Memory Alloy (SMA) staple was inserted and the test was repeated. Data were collected from the tenth load cycle of each sequence and stiffness was calculated. The staples were carefully removed and the segments were studied with micro-computed tomography to assess physical damage to the bony structure. Visual assessment of the vertebral bone structure on micro-CT was performed. Findings: There was no change in motion segment stiffness in flexion/extension nor in axial rotation. There was a reduction in stiffness in lateral bending with 30% reduction bending away from the staple and 12% reduction bending towards the staple. Micro-CT showed physeal damage in all the specimens. Interpretation: Intervertebral stapling using SMA staples cause a reduction in spine stiffness in lateral bending. They also cause damage to the endplate epiphyses.</p>