People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Isaksson, Hanna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Impact of storage time prior to cryopreservation on mechanical properties of aortic homograftscitations
- 2022Crack propagation in articular cartilage under cyclic loading using cohesive finite element modelingcitations
- 2022Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatitecitations
- 2022Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatitecitations
- 2021Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interfacecitations
- 2021Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interfacecitations
- 2020Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interfacecitations
- 2020Bone Damage Evolution Around Integrated Metal Screws Using X-Ray Tomographycitations
- 2020Comparison of small‐angle neutron and X‐ray scattering for studying cortical bone nanostructurecitations
- 2020The influence of microstructure on crack propagation in cortical bone at the mesoscalecitations
- 2019An interface damage model that captures crack propagation at the microscale in cortical bone using XFEMcitations
- 2019Crack propagation in cortical bone is affected by the characteristics of the cement line : a parameter study using an XFEM interface damage modelcitations
- 2019Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitutecitations
- 2017Neutron tomographic imaging of bone-implant interfacecitations
- 2016Differences in acoustic impedance of fresh and embedded human trabecular bone samples - scanning acoustic microscopy and numerical evaluationcitations
- 2016Bone mineral crystal size and organization vary across mature rat bone cortexcitations
- 2016How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurementscitations
Places of action
Organizations | Location | People |
---|
article
Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute
Abstract
<p>Background: Available interventions for preventing fragility hip fractures show limited efficacy. Injection of a biomaterial as bone substitute could increase the fracture strength of the hip. This study aimed to show the feasibility of injecting a calcium sulfate/hydroxyapatite based biomaterial in the femoral neck and to calculate the consequent change in strength using the finite element method. Methods: Five patients were injected with 10 ml calcium sulfate/hydroxyapatite in their femoral neck. Quantitative CT scans were taken before and after injection. Five additional patients with fragility hip fractures were also scanned and the images from the non-fractured contralateral sides were used. Finite element models were created for all proximal femora with and without injection and the models were tested under stance and sideways fall loading until fracture. The change in fracture strength caused by the injection was calculated. Additionally, perturbations in volume, location, and stiffness of the injected material were created to investigate their contribution to the fracture strength increase. Findings: The 10 ml injection succeeded in all patients. Baseline simulations showed theoretical fracture strength increases of 0–9%. Volume increase, change in location and increase in stiffness of the material led to increases in fracture strength of 1–27%, −8-26% and 0–17%, respectively. Altering the location of the injection to a more lateral position and increasing the stiffness of the material led to increases in fracture strength of up to 42%. Interpretation: This study shows that an injection of calcium sulfate/hydroxyapatite is feasible and can theoretically increase the hip's fracture strength.</p>