Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohammadi, Younes

  • Google
  • 1
  • 3
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Fabrication of tubular ceramic membranes as low-cost adsorbent using natural clay for heavy metals removal28citations

Places of action

Chart of shared publication
Asadnia, Mohsen
1 / 31 shared
Zerafat, Mohammad Mahdi
1 / 1 shared
Foorginezhad, Sahar
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Asadnia, Mohsen
  • Zerafat, Mohammad Mahdi
  • Foorginezhad, Sahar
OrganizationsLocationPeople

article

Fabrication of tubular ceramic membranes as low-cost adsorbent using natural clay for heavy metals removal

  • Asadnia, Mohsen
  • Zerafat, Mohammad Mahdi
  • Foorginezhad, Sahar
  • Mohammadi, Younes
Abstract

<p>Due to high toxicity and non-biodegradability, heavy metals pollution is between the major concerns of today's world. Among various techniques, membrane separation technology has taken precedence over other counterparts due to reduced separation units, low energy consumption, facile upscaling, and continuous separation. This study aims to fabricate ultrafiltration membranes made from abundant natural materials to reduce fabrication/operational costs, including precursors, sintering temperature, and filtration pressure. Moreover, SnO<sub>2</sub>/Montmorillonite nanocomposite is synthesized via the hydrothermal procedure and incorporated into the membrane matrix to decrease membrane fouling, enhance water flux, and improve heavy metals rejection rate. Results delineate 97.88–99.26%, 76.79–92.23%, and 24.97–64.74% of Cu (II), Zn (II), and Ni (II) removal from aqueous solutions in the 5–50 ppm range. An enhancement up to ∼40% is observed upon nanocomposite incorporation. Furthermore, ∼30% increase in Cu (II) removal is obtained for SnO<sub>2</sub>/MMT-incorporated membranes. Moreover, utilization of abundant natural minerals results in decreased fabrication/operational cost. Therefore, the obtained removal results and the estimated overall cost provide guidance for the large-scale utilization of low-cost membranes. As a result, the demand for heavy metals removal from wastewaters before their discharge to protect and govern the environment and implementation for agricultural purposes are fulfilled.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • mineral
  • ceramic
  • toxicity
  • sintering