Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grigoriadis, Konstantinos

  • Google
  • 3
  • 10
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023On the feasibility of using Polyester (PE) waste particles from metal coating industry as a secondary raw materials in concrete5citations
  • 2021Hydration and Microwave Curing Temperature Interactions of Repair Mortars5citations
  • 2017Bond of steel reinforcement with microwave cured concrete repair mortars7citations

Places of action

Chart of shared publication
Cuenca, Estefania
1 / 6 shared
Caverzan, Alessio
1 / 1 shared
Rodriquens, Mattia
1 / 1 shared
Ferrara, Liberato
1 / 449 shared
Aravecchia, Niccolò
1 / 1 shared
Ceccone, Giacomo
1 / 4 shared
Negro, Paolo
1 / 1 shared
Bañuls-Ciscar, Jorge
1 / 3 shared
Mangat, Pal
1 / 13 shared
Abubakri, Shahriar
1 / 2 shared
Chart of publication period
2023
2021
2017

Co-Authors (by relevance)

  • Cuenca, Estefania
  • Caverzan, Alessio
  • Rodriquens, Mattia
  • Ferrara, Liberato
  • Aravecchia, Niccolò
  • Ceccone, Giacomo
  • Negro, Paolo
  • Bañuls-Ciscar, Jorge
  • Mangat, Pal
  • Abubakri, Shahriar
OrganizationsLocationPeople

article

On the feasibility of using Polyester (PE) waste particles from metal coating industry as a secondary raw materials in concrete

  • Grigoriadis, Konstantinos
  • Cuenca, Estefania
  • Caverzan, Alessio
  • Rodriquens, Mattia
  • Ferrara, Liberato
  • Aravecchia, Niccolò
  • Ceccone, Giacomo
  • Negro, Paolo
  • Bañuls-Ciscar, Jorge
Abstract

Reduction of CO2 emissions and plastic waste are the main environmental problems that modern society is dealing with. Concrete industry is continuously investing in research and development aimed at producing sustainable cementitious materials. In the last decades, it has gained interest the possibility of reusing polymer waste (mainly PET or PP) in partial substitution of natural constituents (aggregates) or as fiber reinforcement. As a matter of fact, because of the poor mechanical characteristic of polymers compared to the one of natural aggregates, the final cementitious composite has reduced mechanical performance. In the aforesaid framework, the experimental research reported in this paper aims at verifying the feasibility of a pathway able to use fine polymer particles, in detail a Polyester resin (PE resin) which is a waste product of the coating industry, as a partial replacement of sand and, in case, of binder particles, upon a gamma irradiation process similar to the one used for the sanification of containers in food industry, also their effectiveness in performing as seeds of the cement hydration. Firstly, intrigued by a study performed by MIT researchers (in which exposure of PET waste particles to gamma irradiation has been investigated as a method to improve their mechanical performance), the influence of different gamma irradiation dosages (10 kGy or 100 kGy) on PE resin particles was investigated. However, results led to the conclusion that, even with a mere 5% by volume substitution of Portland Limestone Cement (PLC) in the mix, the process does not significantly improve the mechanical performance of cement-based composites. In a second stage, the non-irradiated particles have been employed as a replacement of the binder and/or of the sand at different volume replacement ratios (10% and 20% respectively) in mortar mix designs formulated from typical Self-Compacting Concrete (SCC) mixes. Finally, once identified the most suitable type and level of replacement as the best compromise between ...

Topics
  • impedance spectroscopy
  • polymer
  • composite
  • cement
  • resin