Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Basarir, Hakan

  • Google
  • 4
  • 3
  • 129

Norwegian University of Science and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022An engineered ML model for prediction of the compressive strength of Eco-SCC based on type and proportions of materials11citations
  • 2019An evolutionary-based prediction model of the 28-day compressive strength of high-performance concrete containing cementitious materials12citations
  • 2019Energy dissipation and storage in underground mining operations39citations
  • 2017Green concrete with high-volume fly ash and slag with recycled aggregate and recycled water to build future sustainable cities67citations

Places of action

Chart of shared publication
Sadrossadat, Ehsan
2 / 2 shared
Seibi, Abdennour
1 / 3 shared
Dong, Xiangjian
1 / 1 shared
Chart of publication period
2022
2019
2017

Co-Authors (by relevance)

  • Sadrossadat, Ehsan
  • Seibi, Abdennour
  • Dong, Xiangjian
OrganizationsLocationPeople

article

An engineered ML model for prediction of the compressive strength of Eco-SCC based on type and proportions of materials

  • Sadrossadat, Ehsan
  • Basarir, Hakan
Abstract

<p>Recently, various waste materials and industrial by-products such as supplementary cementitious materials (SCMs) have been proposed to improve the properties of self-compacting concrete (SCC). This profitable waste management strategy results in lowering the costs and carbon emission, and a more sustainable, cleaner and eco-friendly production of SCC (Eco-SCC). The properties of such a complex material are commonly measured through costly experiments. Researchers also proposed experimental data analysis and predictive modeling methods such as machine learning (ML) algorithms for prediction of the properties of concrete. However, proposed models commonly relate the properties to the proportion of constituents only and ignore the effect of their type and properties, and other influential factors. This paper aims to engineer the concept and develop a more efficient ML model for prediction of the 28-day uniaxial compressive strength (UCS<sub>28d</sub>) of SCC containing SCMs. A comprehensive dataset is collected through a precise literature survey. Some dimensionless ratios are proposed to reduce the dimensionality of variables and reflect the effects of considered influential factors in different ML models. Two separate datasets are considered to test the predictability of models where one has new proportions of materials only and the other contains new type of material with new properties. After validation and comparison between various ML models, Gaussian process regression (GPR) model proved to perform well on both considered Test datasets with R<sup>2</sup>, RMSE and MAE of around 0.96, 3.66 and 2.49 respectively. Sensitivity analysis results confirm the contribution and importance of considering type and properties of materials as model variables. This paper demonstrates and highlights that all influential factors must be considered to develop engineered ML models to use as universal tools for indirect estimation of properties of composite materials such as Eco-SCC.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • experiment
  • strength
  • composite
  • machine learning
  • microwave-assisted extraction