Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gilmour, Katie

  • Google
  • 3
  • 8
  • 37

Northumbria University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Microbially induced calcium carbonate precipitation through CO2 sequestration via an engineered bacillus subtilis17citations
  • 2022Microbial community of MX80 bentonite and their interaction with ironcitations
  • 2021An indigenous iron-reducing microbial community from MX80 bentonite - A study in the framework of nuclear waste disposal20citations

Places of action

Chart of shared publication
Zhang, Meng
1 / 12 shared
Haystead, Jamie
1 / 1 shared
Dade-Robertson, Martyn
1 / 7 shared
Wright, Jennifer
1 / 1 shared
Ghimire, Prakriti Sharma
1 / 1 shared
James, Paul
1 / 2 shared
Davie, Colin
2 / 3 shared
Gray, Neil
2 / 2 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Zhang, Meng
  • Haystead, Jamie
  • Dade-Robertson, Martyn
  • Wright, Jennifer
  • Ghimire, Prakriti Sharma
  • James, Paul
  • Davie, Colin
  • Gray, Neil
OrganizationsLocationPeople

article

An indigenous iron-reducing microbial community from MX80 bentonite - A study in the framework of nuclear waste disposal

  • Davie, Colin
  • Gilmour, Katie
  • Gray, Neil
Abstract

Highly compacted MX80 bentonite has been selected as the engineered buffer and backfill material in several proposed concepts for long-term deep geological storage of nuclear waste. Iron-reducing bacteria reduce Fe (III) to Fe (II) and some are adapted to high temperatures and desiccated environments, in keeping with periods of less habitable conditions within the repository. In one potential UK repository concept, iron from carbon steel canisters may contribute to an iron-rich environment at the clay-canister interface. This could lead to changes in the mineralogy and iron-content of MX80 bentonite due to variation of the redox state and solubility, which in turn could alter the geomechanical properties of the clay. To investigate the potential role of iron-reducing bacteria in this process enrichments were carried out with both commercially available MX80 bentonite powder and compacted MX80 bentonite to identify the presence of an indigenous iron-interacting community in the clay. Throughout these enrichments Fe (II) soluble, Fe (II) total, and pH were measured, and the enrichments were subjected to 16S rRNA community analysis. Concentrations of Fe (II) total peaked at day 28 in all enrichments; however, the concentration was overall higher when accompanied by bacterial growth. Fe (II) soluble remained low throughout. 16S rRNA gene sequencing revealed the presence of several putative iron-interacting bacteria, as well as thermotolerant and spore-forming species. The indigenous community was largely comprised of firmicutes, including iron-reducers and spore-forming bacteria such as Desulfosporosinus. Therefore, MX80 bentonite inherently carries a viable microbial community which could potentially interact with structural iron present within MX80 bentonite or other mineral components, such as a carbon steel waste canister. Various research has shown that microbial activity is unlikely within the bulk bentonite provided high compaction is maintained. The importance of this high compaction is highlighted by the finding here of a viable, robust and functionally diverse community within the clay and activity may be possible anyway at edge sites and interfaces where, locally, swelling pressures might not fully develop.

Topics
  • impedance spectroscopy
  • mineral
  • Carbon
  • laser emission spectroscopy
  • steel
  • forming
  • iron