People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gastaldi, Emmanuelle
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Monitoring the degradation status of biodegradable polymers by assessing thermal properties
- 2023Compostability of certified biodegradable plastics at industrial scale processing conditions
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2019How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based compositescitations
- 2019A comparative study of degradation mechanisms of PBSA and PHBV under laboratoryscale composting conditionscitations
- 2019New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
- 2019Experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles.citations
- 2018Fast-Biodegrading polymers
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Nanostructured biopolymers obtained from blends by extrusion
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Adhesion properties of wheat-based particlescitations
- 2012Protein/Clay Nano-Biocompositescitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
Places of action
Organizations | Location | People |
---|
article
Multi-faceted migration in food contact polyethylene-based nanocomposite packaging
Abstract
The flourishing market of nanocomposite food packaging has raised concerns about the safety of these materials. While several works on this issue have been published in recent years, they main focus in these studies was found to be on the possible migration of the nanoparticle its constituents. However, thorough safety evaluation of these materials would not be realistic until the nano-packaging system would be regarded as a whole with all of its components and the interactions of all these components. This matter is specifically crucial in terms of the interaction of nanoparticles with the non-nano additives which are added during the packaging processing. As the toxicity of these processing additives is no less than the nanoparticles, the possible impact of the nanoparticles on the transfer properties of these substances could play a decisive role on the risk assessments of the nanocomposite for food application. This study is an attempt through a thorough analysis of nanocomposite risks in terms of the interactions of components and the resulting effects on the release of nanocomposite substances. In this regard a model nanocomposite of LLDPE and nanoclay which is also comprised of intercalants and some selective additives were put in contact with various food simulants were considered and the global, specific and elemental exposure to the substances were extensively evaluated. The results are believed to provide more tenable judgements about the safety of polymer nanocomposites