Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yin, Zhou

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Structure of single sheet iron oxides produced from surfactant interlayered green rusts11citations

Places of action

Chart of shared publication
Ruby, Christian
1 / 9 shared
Michel, Frederick Marc
1 / 1 shared
Bjerrum, Morten Jannik
1 / 2 shared
Hansen, Christian
1 / 3 shared
Abdelmoula, Mustapha
1 / 12 shared
Dideriksen, Knud
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Ruby, Christian
  • Michel, Frederick Marc
  • Bjerrum, Morten Jannik
  • Hansen, Christian
  • Abdelmoula, Mustapha
  • Dideriksen, Knud
OrganizationsLocationPeople

article

Structure of single sheet iron oxides produced from surfactant interlayered green rusts

  • Ruby, Christian
  • Michel, Frederick Marc
  • Bjerrum, Morten Jannik
  • Hansen, Christian
  • Abdelmoula, Mustapha
  • Yin, Zhou
  • Dideriksen, Knud
Abstract

Ultrathin iron oxide particles are of high interest due to their large surface areas and unusual physical and chemical properties. Previous works have shown that single sheet iron oxides (SSI) can be formed via delamination of oxidized layered iron (hydr)oxides (green rusts, GR) interlayered by dodecanoate. However, there is considerable uncertainty on the true structure of both starting material and final products, and the reaction pathway. In this work, we describe a robust method for SSI synthesis and provide detailed structural characterization of the initial, intermediate and final phases to decipher the reaction mechanism. The SSI product has the formula FeO0.82(OH)1.38·0.7H2O, and consists of platelets with a height of 1 nm and lateral dimensions of 20 to 100 nm as observed by Atomic Force Microscopy and Transmission Electron Microscopy. Mössbauer spectroscopy from 300 to 9 K shows that SSI is distinct from goethite, ferrihydrite and feroxyhite. Pair distribution function (PDF) analysis of high energy X-ray scattering data reveals that SSI has two distinct nearest neighbor FeFe distances in contrast to the single distance in the parent FeII-FeIII (hydr)oxide composed of entirely edge-sharing octahedra. Modeling of the SSI PDF data indicates that oxidation of FeII to FeIII of dodecanoate-intercalated green rust results in displacements of Fe atoms perpendicular from the parent iron (hydr)oxide layer, forming a material that consists of iron polyhedra linked by both corner- and edge-sharing. This model which is different from the previously published model, matches the measured SSI thickness and electron diffraction pattern. This elucidated reaction pathway confirms that the dodecanoate interlayers in GR hinders Fe polymerization across interlayers and thus restrict chemical transformations to largely two-dimensional space. The increase of single- and double- coordinated O/OH groups in the SSI compared with the parent GRs is expected to give a high reactivity of SSI as surface complexation sorbents.

Topics
  • impedance spectroscopy
  • surface
  • phase
  • electron diffraction
  • atomic force microscopy
  • layered
  • transmission electron microscopy
  • two-dimensional
  • forming
  • iron
  • surfactant
  • X-ray scattering
  • Mössbauer spectroscopy