People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oti, Jonathan
University of South Wales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Development of low carbon concrete and prospective of geopolymer concrete using lightweight coarse aggregate and cement replacement materialscitations
- 2023Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solutioncitations
- 2022Performance of sustainable road pavements founded on clay subgrades treated with eco-friendly cementitious materialscitations
- 2022Evaluation of the structural performance of low carbon concretecitations
- 2020Mechanical properties and microstructure of fibre-reinforced clay blended with by-product cementitious materialscitations
- 2016Engineering Properties of Concrete made with Brick Dust Waste
- 2015Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
- 2015Development of stabilised brick and mortar using biomass wastecitations
- 2015The Use of Palm Kernel Shell and Ash for Concrete Production
- 2012Stabilised unfired clay bricks for environmental and sustainable usecitations
- 2012Designed non-fired clay mixes for sustainable and low carbon usecitations
- 2010Freeze-thaw of stabilised clay brickcitations
- 2010Unfired clay masonry bricks incorporating slate wastecitations
- 2010Design thermal values for unfired clay brickscitations
- 2010Engineering properties of concrete made with slate wastecitations
- 2010Sustainable masonry mortar for brick joint and plaster in the UKcitations
- 2009Engineering properties of unfired clay masonry brickscitations
- 2009Compressive strength and microstructural analysis of unfired clay masonry brickscitations
- 2009Unfired clay bricks: from laboratory to industrial productioncitations
- 2008Using Slag for Unfired-Clay Masonry-Brickscitations
- 2008Innovative Building Materials: Manufactured Bricks Using By-products of an Industrial Process
- 2008Developing unfired stabilised building materials in the UKcitations
Places of action
Organizations | Location | People |
---|
article
Designed non-fired clay mixes for sustainable and low carbon use
Abstract
This paper reports on designed non-fired clay mixes for sustainability and low carbon use. Ground Granulated Blastfurnace Slag (GGBS), an industrial by-product, was used as a partial substitute for conventional stabiliser (Lime or Portland cement) to stabilise Kaolinite Clay (KC) and Lower Oxford Clay (LOC), for sustainable and low carbon non-fired clay building material production. Although GGBS has been used extensively in concretes to reduce the carbon footprint, there is an unexplored potential for its use as a cement replacement for stabilised soil production. The benefits of using GGBS in non-fired clay building material development include lower emissions of greenhouse gases and improved durability. The parameters considered under this study are: (1) material characterisation, (2) unconfined compressive and (3) durability. For the assessment of durability, a MX 2000VJ Tech multi-channel data logger equipped with a digital displacement transducer and computer device was employed to monitor the linear expansion behaviour of the stabilised test specimens. The 90-day unconfined compressive results for the test specimens showed that there is significant strength gain (up to 5 N/mm2) for all the stabilised mixtures. The lime-activated GGBS stabiliser has significantly higher influence in the strength gain compared to the equivalent PC-based system. These results suggest that there is potential in using Lime or Portland cement activated GGBS blend for the stabilisation of natural clay soil for sustainable and low carbon building materials production.