Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Suryo Pratomo, Edo

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Adaptive circumferential distance location of the laser energy beam in the laser-assisted turning of Al/SiC metal matrix composites3citations

Places of action

Chart of shared publication
Li, Lin
1 / 61 shared
Mativenga, Paul T.
1 / 36 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Li, Lin
  • Mativenga, Paul T.
OrganizationsLocationPeople

article

Adaptive circumferential distance location of the laser energy beam in the laser-assisted turning of Al/SiC metal matrix composites

  • Suryo Pratomo, Edo
  • Li, Lin
  • Mativenga, Paul T.
Abstract

Laser-assisted turning (LAT) involves locally heating a rotating workpiece using a focused laser beam before the removal of material. A key aspect in optimising productivity with laser-assisted turning is understanding the thermal relationship between laser heating, the improved material removal rate, and machinability. Consequently, in this paper, a thermal heating and laser-assisted turning finite element model and experiments were conducted to assess the machinability of an Al/SiCp MMC workpiece, considering the circumferential location of the laser beam from the cutting point. The results confirm that laser power and cutting velocity influence the temperature profile from the laser spot to the tool point and the heat-affected depth. Positioning the cutting tool closer to the laser spot effectively reduces the Von Mises stress during cutting at higher cutting temperatures. At the same time, the experiment indicates an increased risk of directly heating the tool, which can affect the integrity of the cutting tool. The work further reveals that at specified cutting velocities, lower specific cutting energy improves the tool condition and surface quality of the machined parts. Based on a range of material removal rates and laser-specific energy density, a new criterion for optimal laser-tool circumferential distance was determined. Establishing this distance can act as a guide for the laser-assisted turning of Al/SiCp metal matrix composites and potentially other materials.

Topics
  • density
  • impedance spectroscopy
  • surface
  • energy density
  • experiment
  • metal-matrix composite