People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tulke, Marc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Forming of aluminium alloys with macro-structured tools at cryogenic temperaturecitations
- 2023Contact conditions and temperature distribution during cryogenic deep drawing with macro-structured toolscitations
- 2022Influence of Macro-Structured Tools on the Formability of Aluminum Alloys in the Cryogenic Temperature Rangecitations
- 2022Deep drawing of DC06 at high strain ratescitations
- 2022Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigationscitations
- 2021Cryogenic deep drawing of aluminum alloy AA6014 using macro-structured toolscitations
- 2021Data based model predictive control for ring rollingcitations
- 2020Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulationcitations
- 2019Non-linear Model-predictive-control for Thermomechanical Ring Rolling
Places of action
Organizations | Location | People |
---|
article
Forming of aluminium alloys with macro-structured tools at cryogenic temperature
Abstract
<p>The novel concept of macro-structuring deep drawing tools is used here for cryogenic forming of AA6014 in order to improve formability. In addition to known advantages of macro-structuring in tooling like friction force reduction, heat flux can also be directly influenced. This enables cryogenic sheet metal forming without active cooling of the tools. The improved formability and increased strength of aluminium alloys, which is attributed to the effects in the FCC crystal structure at cryogenic temperature, are utilised for increasing the drawing depth. Successful process routes, boundary conditions and design rules are demonstrated and influencings effects are discussed.</p>