Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Toudeshki, Hamid Ghanbari

  • Google
  • 5
  • 3
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2015Optimal operation strategy and gas utilization in a future integrated steel plant28citations
  • 2015Sustainable development of primary steelmaking under novel blast furnace operation and injection of different reducing agentscitations
  • 2012Steelmaking integrated with a polygeneration plant for improved sustainabilitycitations
  • 2011Optimization of blast furnace steelmaking process from a process integration perspectivecitations
  • 2011Optimization study of steelmaking under novel blast furnace operation combined with methanol production19citations

Places of action

Chart of shared publication
Pettersson, Frank
5 / 28 shared
Saxén, Henrik
5 / 32 shared
Helle, Mikko
3 / 12 shared
Chart of publication period
2015
2012
2011

Co-Authors (by relevance)

  • Pettersson, Frank
  • Saxén, Henrik
  • Helle, Mikko
OrganizationsLocationPeople

article

Optimal operation strategy and gas utilization in a future integrated steel plant

  • Toudeshki, Hamid Ghanbari
  • Pettersson, Frank
  • Saxén, Henrik
Abstract

In this work future perspectives of primary steelmaking are numerically studied with the aim to find ways to increase the sustainability of this industrial sector. The key options studied are emerging blast furnace operation technologies combined with carbon capturing and utilization units and integration with a polygeneration system producing district heat, electricity and methanol. A mathematical model is developed using the suggested superstructure to optimize the use of residual gases minimizing the internal energy demand under specified operating costs, simultaneously considering investment costs for new process units. The results of the study, which illustrate both the optimal operation of the blast furnace and the required unit processes for utilization of the residual gasses in the plant, provide guidelines on how this industrial sector can be developed in the future to considerably reduce harmful emissions and to make maximum use of raw materials. A large number of scenarios were studied and the net present value, steelmaking costs, specific emissions and methanol production in the optimal states were analyzed. The results reveal the optimal technology for gas treatment under periodic optimization considering a varying seasonal external energy demand. It demonstrates that the net present value of the system for a time horizon can be increased and that the CO2 emissions from the system can be reduced by up to 30% by an optimal design and flexible operation of the system.

Topics
  • impedance spectroscopy
  • Carbon
  • steel