People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues, Sc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Boehmite-phenolic resin carbon molecular sieve membranes-Permeation and adsorption studies
Abstract
Composite carbon molecular sieve membranes (c-CMSM) were prepared in a single dipping-drying-carbonization step from phenolic resin solutions (12.5-15 wt.%) loaded with boehmite nanoparticles (0.5-1.2 wt.%). A carbon matrix with well-dispersed Al2O3 nanowires was formed from the decomposition of the resin and dehydroxylation of boehmite. The effect of the carbon/Al(2)O(3)ratio on the porous structure of the c-CMSM was accessed based on the pore size distribution and gas permeation toward N-2, O-2, CO2, He, H-2, C3H6 and C3H8. c-CMSM with higher carbon/Al2O3 ratios had a more open porous structure, exhibiting higher permeabilities and lower permselectivities. c-CMSM performance was above the upper bound curves for polymeric membranes for several gas pairs, particularly for C3H6/C3H8 (permeability toward C3H6 of 420 barrer and permselectivity of 18.1 for a c-CMSM with carbon/Al2O3 ratio of 4.4). Unsupported films were also prepared (carbon/Al(2)O(3)ratio 7.3) and crushed into small flakes. Equilibrium isotherms of H-2, N-2, O-2, CO2, C3H8 and C3H6 at 293 K were determined on these flakes to obtain the kinetic and adsorption selectivities toward gas pairs of interest; obtained adsorption and diffusion coefficients accurately predicted the permeabilities of all studied gases except CO2 (experimental and predicted permeabilities of 1148 and 154 barrer, respectively).