People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shakeel, Ahmad
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Polymer based nanocompositescitations
- 2022Tuning the rheological properties of kaolin suspensions using biopolymerscitations
- 2022Advanced polymeric/inorganic nanohybridscitations
- 2022Rheology of Flocculated Suspension in Turbidity Currents
- 2022Effects of organic matter degradation in cohesive sedimentcitations
- 2022Polymer based nanocomposites : a strategic tool for detection of toxic pollutants in environmental matricescitations
- 2022From fundamentals to implementation of yield stress for nautical bottom : case study of the Port of Hamburgcitations
- 2022Why do settling and yield stress of mud differ in european ports?
- 2022From fundamentals to implementation of yield stress for nautical bottom: Case study of the Port of Hamburgcitations
- 2021Rheology of Mudcitations
- 2021Laboratory seismic measurements for layer-specific description of fluid mud and for linking seismic velocities to rheological propertiescitations
- 2020Using in situ density and strength measurements for sediment maintenance in ports and waterwayscitations
- 2020Yield stress measurements of mud sediments using different rheological methods and geometriescitations
- 2020pH-responsive nano-structured membranes prepared from oppositely charged block copolymer nanoparticles and iron oxide nanoparticlescitations
- 2019Is density enough to predict the rheology of natural sediments?citations
- 2019Rheological analysis of mud from Port of Hamburg, Germanycitations
Places of action
Organizations | Location | People |
---|
article
Polymer based nanocomposites
Abstract
<p>A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.</p>