Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diniz, M. S.

  • Google
  • 3
  • 8
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Hydrophobic DES Based on Menthol and Natural Organic Acids for Use in Antifouling Marine Coatings18citations
  • 2023Uncovering biodegradability and biocompatibility of betaine-based deep eutectic systems9citations
  • 2022Assessment of deep eutectic solvents toxicity in zebrafish (Danio rerio)22citations

Places of action

Chart of shared publication
Paiva, Alexandre
3 / 45 shared
Oliveira, Filipe
1 / 7 shared
Gaudencio, Susana P.
1 / 1 shared
Duarte, Ana Rita C.
3 / 69 shared
Sobral, Rita
1 / 1 shared
Valente, Sara
1 / 1 shared
Ferreira, Inês João
3 / 3 shared
Meneses, Liane
1 / 8 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Paiva, Alexandre
  • Oliveira, Filipe
  • Gaudencio, Susana P.
  • Duarte, Ana Rita C.
  • Sobral, Rita
  • Valente, Sara
  • Ferreira, Inês João
  • Meneses, Liane
OrganizationsLocationPeople

article

Assessment of deep eutectic solvents toxicity in zebrafish (Danio rerio)

  • Paiva, Alexandre
  • Meneses, Liane
  • Duarte, Ana Rita C.
  • Diniz, M. S.
  • Ferreira, Inês João
Abstract

<p>Deep Eutectic Systems (DES) have emerged as a “green alternative” to organic solvents and have been coined as biocompatible and biodegradable. However, the number of studies concerning the real biodegradability and biocompatibility are scarce. Thus, to study the toxicity of certain DES, two different approaches were used: i) zebrafish exposure via water, where the system (DES) was tested at potentially realistic environmental concentrations and ii) via intraperitoneal injection, where the system was tested in different concentrations, relevant to the pharmaceutical industry. These studies were performed using zebrafish, a standardized animal model often used in biomedicine and toxicological assays. The results show low toxicity according to tested concentrations (up to 73.47 μM), when the system CA:T:W, with a 2:1:3 molar ratio, was tested through exposure via water and also in the intraperitoneal injection tests with concentrations up to 6000 μM. The activity of different enzymes involved in antioxidant pathways (glutathione S-transferase, catalase, glutathione peroxidase), the total antioxidant capacity (TAC) and lipoperoxidation (MDA content) were determined suggesting low toxicity of the tested system (DES). The promising results herein presented show that DES present the potential to be used as the new class of green solvents, not only for use in the pharmaceutical industry, but also in cosmetic and chemical engineering processes without causing negative impact on living organisms.</p>

Topics
  • toxicity
  • biocompatibility