Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Qs, Song

  • Google
  • 1
  • 4
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Integrated transcriptomics and proteomics provide new insights into the cadmium-induced ovarian toxicity on Pardosa pseudoannulata.7citations

Places of action

Chart of shared publication
Yd, Peng
1 / 1 shared
Peng, Y.
1 / 6 shared
Wang, Z.
1 / 99 shared
Lyu, Bo
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Yd, Peng
  • Peng, Y.
  • Wang, Z.
  • Lyu, Bo
OrganizationsLocationPeople

article

Integrated transcriptomics and proteomics provide new insights into the cadmium-induced ovarian toxicity on Pardosa pseudoannulata.

  • Yd, Peng
  • Qs, Song
  • Peng, Y.
  • Wang, Z.
  • Lyu, Bo
Abstract

Cadmium (Cd) pollution is intractable heavy metal pollution in the farmland ecosystem, posing a life-threatening challenge to the paddy field organisms. Spiders are riveting animal biomarkers for evaluating Cd-induced toxicity, yet the effects of long-term Cd toxicity on spider reproductive function and its underlying mechanism remain unclear. In the present study, we found that Cd exposure impaired the antioxidant enzyme system in the wolf spider Pardosa pseudoannulata and decreased the concentration of four antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase, and peroxidase) (p < 0.05). The content of vitellogenin and the number of hatched spiderlings were also dramatically reduced under Cd stress (p < 0.05), indicating that Cd stress could vitiate the fecundity of P. pseudoannulata. Moreover, a total of 10,511 differentially expressed genes (DEGs) and 391 proteins (DEPs) were yielded from the ovarian transcriptome and proteome, and a mass of genes and proteins involved in protein processing in endoplasmic reticulum (ER) were significantly down-regulated. DEGs and DEPs directly encoding the antioxidant enzyme system and/or vitellogenesis were also distinctively down-regulated. In addition, we illustrated that the PI3K-AKT signaling pathway might play a crucial role in regulating protein synthesis, cell cycle, growth, differentiation and survival in P. pseudoannulata. The effects of protein processing in ER and PI3K-AKT pathways could further trigger transcriptional factor Forkhead shackling the protein synthesis and cell growth process. Collectively, this integrated analysis identified the Cd-induced reproductive toxicity on P. pseudoannulata and provided multifaceted insights to investigate the molecular mechanisms of spiders to Cd pollution.

Topics
  • impedance spectroscopy
  • toxicity
  • Cadmium