Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Walpita, Janitha

  • Google
  • 1
  • 5
  • 142

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media142citations

Places of action

Chart of shared publication
Adassooriya, Nadeesh
1 / 1 shared
Ashiq, Ahmed
1 / 2 shared
Rajapaksha, Anushka Upamali
1 / 4 shared
Vithanage, Meththika
1 / 5 shared
Ok, Yong Sik
1 / 15 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Adassooriya, Nadeesh
  • Ashiq, Ahmed
  • Rajapaksha, Anushka Upamali
  • Vithanage, Meththika
  • Ok, Yong Sik
OrganizationsLocationPeople

article

Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media

  • Adassooriya, Nadeesh
  • Walpita, Janitha
  • Ashiq, Ahmed
  • Rajapaksha, Anushka Upamali
  • Vithanage, Meththika
  • Ok, Yong Sik
Abstract

<p>This study evaluates a novel adsorbent for ciprofloxacin (CPX) removal from water using a composite derived from municipal solid waste biochar (MSW-BC) and montmorillonite (MMT). The composite adsorbent and pristine materials were characterized using powder X-Ray Diffraction (PXRD), Fourier-Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscope (SEM) before and after the adsorption. Batch experiments were conducted to study the mechanisms involved in the adsorption process. Ciprofloxacin sorption mechanisms were interpreted in terms of its pH-dependency and the distribution coefficients. The SEM images confirmed the successful binding of MMT onto the MSW-BC through flaky structure along with a porous morphology. Encapsulation of MMT onto MSW-BC was exhibited through changes in the basal spacing of MMT via PXRD analysis. Results from FTIR spectra indicated the presence of functional groups for both pristine materials and the composite that were involved in the adsorption reaction. The Hill isotherm model and pseudo-second-order and Elovich kinetic models fitted the batch sorption data, which explained the surface heterogeneity of the composite and cooperative adsorption mechanisms. Changes made to the MSW-BC through the introduction of MMT, enhanced the active sites on the composite adsorbent, thereby improving its interaction with ionizable CPX molecules giving high sorption efficiency.</p>

Topics
  • porous
  • surface
  • scanning electron microscopy
  • experiment
  • composite
  • powder X-ray diffraction
  • spectroscopy