Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wacey, David

  • Google
  • 4
  • 8
  • 113

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia24citations
  • 2017Critical testing of potential cellular structures within microtubes in 145 Ma volcanic glass from the Argo Abyssal Plain12citations
  • 20163.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation59citations
  • 2014The nano-scale anatomy of a complex carbon-lined microtube in volcanic glass from the ~92Ma Troodos Ophiolite, Cyprus18citations

Places of action

Chart of shared publication
Kong, C.
3 / 10 shared
Saunders, Martin
4 / 33 shared
Eiloart, Kate
1 / 1 shared
Kong, Charlie
1 / 4 shared
Fisk, Martin
1 / 23 shared
Brasier, A.
1 / 1 shared
Brasier, M.
1 / 1 shared
Mcloughlin, N.
1 / 2 shared
Chart of publication period
2018
2017
2016
2014

Co-Authors (by relevance)

  • Kong, C.
  • Saunders, Martin
  • Eiloart, Kate
  • Kong, Charlie
  • Fisk, Martin
  • Brasier, A.
  • Brasier, M.
  • Mcloughlin, N.
OrganizationsLocationPeople

article

Critical testing of potential cellular structures within microtubes in 145 Ma volcanic glass from the Argo Abyssal Plain

  • Eiloart, Kate
  • Wacey, David
  • Kong, Charlie
  • Fisk, Martin
  • Saunders, Martin
Abstract

<p>Microtubes within 145 Ma volcanic glass from the Argo Abyssal Plain possess intriguing internal microtextures that under light microscopy resemble biological septa and ovoid microbial cells. These microtextures have previously been used as part of a suite of evidence to support the biogenicity of such microtubes, and similar textures are beginning to be used in attempts to taxonomically classify microtubes from both the modern and ancient oceanic crust within an ichnofossil (trace fossil) hierarchy. Here we use high spatial resolution correlative microscopy to characterize the morphology and chemistry of the Argo microtubes in order to critically assess the origin of these microtextures and increase our understanding of the potential formation mechanisms of microtubes in volcanic glass. Electron microscopy shows that the microtubes contain abundant elongated void spaces and when these are reconstructed in three dimensions they closely replicate the morphology and distribution of the previously described ‘septa’. No organic material is associated with the void spaces and so we reinterpret the ‘septa’ as cracks within the clay mineral phase that infills the microtubes, probably formed during sample collection and/or preparation. One ovoid body also appears to correlate with void space but further data are required to substantiate such an origin. We caution that the study of micro-textures within volcanic glass-hosted microtubes by optical microscopy alone may be misleading, hence each individual occurrence should be subject to detailed micro- to nano-scale in situ morphological and chemical investigation before being used as a potential biosignature. Several microtubes do contain elevated levels of carbon, typically found within amorphous carbonate minerals that, along with nontronite clay, have precipitated within the microtubes. One microtube contains organic carbon; this is heterogeneously distributed, occurs away from void spaces and is spatially associated with elevated levels of titanium. This organic carbon could originate from in situ biological activity but it could also have been introduced by circulating seawater. Titanium adsorbed onto this organic material may provide a titanium source for the commonly observed titanite mineralization found in ancient volcanic glass-hosted microtubes within greenstone belts and ophiolites that have experienced low grade metamorphism. Elemental enrichments and depletions in three chemically distinct regions (glass, alteration rim, and tube interior) provide further insights into microtube formation mechanisms. Alteration rims have sharply defined edges, are about 0.1 μm wide independent of microtube diameter, and are primarily composed of Si, Al, O ± Ti. The tube interiors are depleted in Si and Al, and most other elements (Ca, Mg, Na, Mn) relative to fresh glass but K and Fe may be enriched. There is no evidence for depletion of elements in the glass immediately exterior to the alteration rim. This favours a mechanism whereby microtubes grow by increasing in length, rather than increasing in diameter. In this model protons are the major agent of glass alteration and the supply of protons and the kinetics of the formation of the Si-Al alteration rim control the diameter of the microtubes.</p>

Topics
  • impedance spectroscopy
  • mineral
  • amorphous
  • Carbon
  • phase
  • glass
  • glass
  • crack
  • texture
  • titanium
  • electron microscopy
  • void
  • optical microscopy