People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luquot, Linda
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016Efficiency of magnesium hydroxide as engineering seal in the geological sequestration of CO 2citations
- 2016Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brinecitations
- 2014Rheological Characterization of Olivine Slurries, Sheared Under CO2 Pressurecitations
- 2014Rheological characterization of olivine slurries, sheared under CO 2 pressurecitations
- 2013Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brinecitations
- 2012CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation - Otway Basin-Australia)citations
Places of action
Organizations | Location | People |
---|
article
CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation - Otway Basin-Australia)
Abstract
Underground CO2 sequestration is highly recommended as an effective means of significantly decreasing CO2 concentration in the atmosphere. Mineral storage is the more secure technology, but requires the presence of high concentration of divalent cations in the pore-fluid. Results from CO2 percolation experiments through chlorite/zeolite-rich sandstone samples from the Pretty Hill Formation (Otway Basin, Australia) are presented. The dissolution of the laumontite (7 wt.%) and chamosite (7 wt.%) are the potential sources of calcium, iron and magnesium required for carbonate precipitation. The percolation experiment was setup to reproduce, at laboratory scale, the in situ temperature and pressure conditions (T = 95 degrees C and P = 10 MPa). The fluid injected at constant flow rate is a rock-equilibrated brine subsequently enriched in CO2 up to partial pressure of 6 MPa. We observe feldspars, laumontite and chamosite dissolution, kaolinite and silica precipitation and a noticeable sink of CO2 in the sample which is attributed to the precipitation of both amorphous carbon due to the reduction of CO2 and Fe-rich carbonate. Permeability decreases of about one order of magnitude due to the localization of the kaolinite precipitation in the main flow paths, while porosity increases. The high reactivity of this sandstone makes this reservoir a valuable target for CO2 mineralization, but the associated permeability decrease may limit the injection rate and the spreading of the CO2 in the reservoir.