Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chugaev, A.

  • Google
  • 1
  • 4
  • 73

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Behavior of highly-siderophile elements during magma degassing: A case study at the Kudryavy volcano73citations

Places of action

Chart of shared publication
Distler, V.
1 / 1 shared
Yudovskaya, M.
1 / 1 shared
Chaplygin, I.
1 / 2 shared
Dikov, Y.
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Distler, V.
  • Yudovskaya, M.
  • Chaplygin, I.
  • Dikov, Y.
OrganizationsLocationPeople

article

Behavior of highly-siderophile elements during magma degassing: A case study at the Kudryavy volcano

  • Distler, V.
  • Yudovskaya, M.
  • Chaplygin, I.
  • Dikov, Y.
  • Chugaev, A.
Abstract

The capacity of natural vapor phase to transport metallic elements is not unambiguously established relative to that of a liquid hydrothermal phase. We measured highly-siderophile element (HSE) and Au abundances in gas condensates and mineralized rocks in order to examine the geochemical behavior of these elements during magma degassing at the Kudryavy volcano, Kurile Arc. Gas condensates of the Kudryavy volcano are enriched with Re, Os and Au (to 210 ppb Re, 0.907 ppb Os, 2.4 ppb Au, 0.49 ppb Pt, 0.4 ppb Pd, 0.04 ppb Ir, 0.07 ppb Rh, 0.009 ppb Ru). The measured enrichment factors demonstrate that Os is the element that is most strongly compatible with fluid. Fluid compatibility decreases in the sequence: OsNReNAuNPtNPd over the temperature range from 480 to 850 °C. The mobility of HSE and Au in fluid is confirmed by the sublimation of their compounds, amongst which rheniite ReS2 and K perrhenate KReO4, native Pt, Pt–Pd selenide and various Au alloys have been identified with a scanning electron microscope [Nature 369 (1994) 51; Miner. Deposita 40 (2006) 828]. In addition, new HSE compounds, including ReO2, ReO3, Pt(OH)2 and metal-chloro-organic complexes, were detected in the sublimates using X-ray photoelectron spectroscopy. In contrast to the chalcophile behavior of Pb, Re and Os exhibit a dual behavior in the gaseous phase, since both sulfide and oxide phases containing these metals precipitate throughout the entire temperature range. However, available mineralogical, experimental and thermodynamic modeling data indicate that Re and Os are preferentially transported as oxygen-bearing species. Data on metal contents in fumarolic crusts of the volcano confirm that a high-temperature low-density fluid can concentrate these metals to economic grade.Newly obtained data on the Pb and Sm–Nd isotopic composition of volcanic gas condensates and host rocks were correlated with available data on Re and Os abundances and with the Re–Os isotopic composition of the same sample set in order to identify the possible sources of the magmatic melts. The homogeneity of the Pb and Nd isotopic composition of volcanic rocks (206Pb/204Pb: 18.33–18.41, 207Pb/204Pb: 15.52–15.54, 206Pb/204Pb: 38.19–38.24; n=6; 143Nd/144Nd: 0.513067–0.513118; n=5)indicates that the main source of the melts was metasomatised depleted MORB mantle. This is consistent with the relatively low radiogenic 187Os/188Os isotope ratios of younger basaltic andesites and fumarolic gas condensates, but is inconsistent with theradiogenic Os isotope characteristics of the acid volcanic rocks and the high Re abundance in rocks and fluids [Geochem. Cosmochem. Acta 72 (2008) 889].The results of this study suggest that similar elemental and isotope HSE signature can be characteristic of HSE fractionation in other environments of low-density oxidizing fluid stability.

Topics
  • density
  • impedance spectroscopy
  • compound
  • mobility
  • x-ray photoelectron spectroscopy
  • Oxygen
  • melt
  • precipitate
  • degassing
  • fractionation