Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cheung, Clara

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Environmental assessment of cement production with added graphene6citations

Places of action

Chart of shared publication
Manu, Professor Patrick
1 / 4 shared
Yunusa-Kaltungo, Akilu
1 / 4 shared
Watson, Michael
1 / 2 shared
Ladislaus, Paul
1 / 2 shared
Tarpani, Raphael Ricardo Zepon
1 / 1 shared
Gallego Schmid, Alejandro
1 / 2 shared
Su, Meini
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Manu, Professor Patrick
  • Yunusa-Kaltungo, Akilu
  • Watson, Michael
  • Ladislaus, Paul
  • Tarpani, Raphael Ricardo Zepon
  • Gallego Schmid, Alejandro
  • Su, Meini
OrganizationsLocationPeople

article

Environmental assessment of cement production with added graphene

  • Manu, Professor Patrick
  • Yunusa-Kaltungo, Akilu
  • Cheung, Clara
  • Watson, Michael
  • Ladislaus, Paul
  • Tarpani, Raphael Ricardo Zepon
  • Gallego Schmid, Alejandro
  • Su, Meini
Abstract

Cement production significantly contributes to climate change, necessitating alternatives to mitigate the environmental impacts of this essential construction material. This study evaluates 18 environmental impacts of producing Ordinary Portland Cement (OPC) and Graphene (Gr) using life cycle assessment (LCA). Additionally, we explore whether mixing OPC and Gr can lower the life cycle environmental impacts of the final product (OPCGr). Our results show that OPC production in the United Kingdom generates 775 kg CO<sub>2</sub> eq./t, 57% only from geogenic CO<sub>2</sub> emissions. Gr production via electrochemical exfoliation in Australia results in 121,000-143,000 kg CO<sub>2</sub> eq./t, primarily due to electricity generation. Using hydro and nuclear power (e.g., in Brazil and France) can sharply reduce these impacts (global warming potential in the range of 11,000-35,000 kg CO<sub>2</sub> eq./t). Adding 0.02 wt% of Gr in powder form (Grpowder) from Australia to the OPC and assuming a 16.5% reduction in its usage due to increased strength, results in 674 kg CO<sub>2</sub> eq./t OPCGr (a 13% reduction). However, some impact categories like marine eutrophication and freshwater ecotoxicity potentials increase sharply (&gt; 28%). Using Grpowder from Brazil and France further reduces the OPCGr global warming potential and the overall environmental footprint.<br/><br/>

Topics
  • strength
  • cement