People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hulsen, Martien A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Numerical Modeling of the Blend Morphology Evolution in Twin-Screw Extruderscitations
- 2022Constitutive framework for rheologically complex interfaces with an application to elastoviscoplasticitycitations
- 2021Numerical simulations of the polydisperse droplet size distribution of disperse blends in complex flowcitations
- 2020Numerical analysis of the crystallization kinetics in SLScitations
- 2020On the validity of 2D analysis of non-isothermal sintering in SLScitations
- 2019Simulation of bubble growth during the foaming process and mechanics of the solid foamcitations
- 2018Temperature-dependent sintering of two viscous particlescitations
- 2017Sintering of two viscoelastic particles: a computational approachcitations
- 2016Predicting the fountain flow instability
- 2006On the streamfunction-vorticity formulation in sliding bi-period frames : application to bulk behavior for polymer blendscitations
Places of action
Organizations | Location | People |
---|
article
On the validity of 2D analysis of non-isothermal sintering in SLS
Abstract
Selective laser sintering (SLS) is an important additive manufacturing method for polymers and is increasingly used for industrial applications. To improve the quality of printed products a thorough understanding of the process is necessary. Simulations are a convenient way to assess the sintering in detail. In literature several numerical studies can be found on the sintering process of two particles. Both 2D and 3D geometries are used and sometimes the assumption of axisymmetry is made. If the effect of the laser beam in temperature-dependent sintering is taken into account, axisymmetry cannot be assumed anymore and full 3D simulations are required. However, these simulations are complex and computationally expensive. In this work, we assess if 2D simulations are representative for the 3D case of the temperature-dependent sintering process of two viscous particles. We find that 2D simulations are a good alternative for 3D simulations for the sintering problem of two particles, if the correct geometrical scaling factors are taken into account.